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Abstract. This is the first of a series of three papers treating light baryon resonances (up to 3 GeV)
within a relativistically covariant quark model based on the three-fermion Bethe-Salpeter equation with
instantaneous two- and three-body forces. In this paper we give a unified description of the theoretical
background and demonstrate how to solve the Bethe-Salpeter equation by a reduction to the Salpeter
equation. The specific new features of our covariant Salpeter model with respect to the usual nonrelativistic
quark model are discussed in detail. The purely theoretical results obtained in this paper will be applied
numerically to explicit quark models for light baryons in two subsequent papers.

PACS. 11.10.St Bound and unstable states; Bethe-Salpeter equations – 12.39.Ki Relativistic quark model
– 12.40.Yx Hadron mass models and calculations – 14.20.-c Baryons (including antiparticles)

1 Introduction

The classification of baryon resonances as three-quark
states within nonrelativistic potential models has a long
and very successful history. It is however unclear how to
relate such models to QCD. Some ingredients of nonrel-
ativistic quark models emerge from QCD, e.g. massive
quarks as a consequence of chiral symmetry breaking,
linear confinement potentials (on the lattice) due to the
non-Abelian gauge coupling and some candidates for spin-
dependent residual interactions like one-gluon-exchange or
instanton-induced quark forces. For light quark flavors it is
however unclear, how to unite these features in a common
picture. The main obstacle is the nonrelativistic approach
which seems to be completely inadequate for small con-
stituent quark masses and strong quark binding.

Quantum field theory seems to offer a solution to
this problem, replacing the nonrelativistic wave functions
by Bethe-Salpeter amplitudes obeying a suitable Bethe-
Salpeter equation. In the case of QCD none of the basic
ingredients of these equations is reliably known, i.e. we
have no reliable prescription to calculate the full quark
propagators and interaction vertices. Moreover, we meet a
serious problem with gauge invariance because the Bethe-
Salpeter amplitudes are gauge-dependent. Nonetheless the
general framework of quantum field theory can be used for
a reasonable phenomenological description. If we want to
remain as close as possible to the features of nonrelativis-
tic quark models, the Bethe-Salpeter equation should con-
tain free quark propagators with constituent quark masses
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and instantaneous, unretarded interactions only. Both re-
quirements are purely phenomenological assumptions but
reasonably justified by the apparent success of nonrela-
tivistic quark models. In this way, these Bethe-Salpeter
amplitudes form a more suitable basis for quark models,
but respecting, in particular, relativistic covariance. As
such it was already successfully used for the description of
light mesons [18–24]. The baryon Bethe-Salpeter equation
with genuine instantaneous three-quark forces is solved
as in the mesonic calculations by a reduction to a three-
dimensional integral equation (Salpeter equation) which
is very similar to the Schrödinger equation. The spectrum
contains, however, also antiparticle solutions correspond-
ing to particles with charge conjugated quantum numbers.
This situation is new and needs a special discussion. An-
other complication arises when genuine two-particle in-
teractions are taken into account. In quark models this
is natural, when the (three-body) confinement forces are
supplemented by a two-body residual interaction (one-
gluon-exchange, instanton induced forces). In this case an
effective three-body interaction kernel has to be derived.

None of these features is entirely new, but there is no
reference in the literature which presents this theoretical
background in a unified way. The purpose of this paper is
to fill this gap. In two subsequent papers [1,2] we will use
these purely theoretical results for specific calculations of
the baryon spectrum up to 3 GeV.

This paper is organized as follows: In section 2 we
briefly recall how in quantum field theory bound states
of three fermions occur as poles in the six-point Green’s
function defining the Bethe-Salpeter amplitudes as the
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corresponding residua at these poles. This property of the
Green’s function is used in section 3 do derive simultane-
ously the Bethe-Salpeter equation for the Bethe-Salpeter
amplitudes and their normalization condition in a simple
and appealing way by a Laurent expansion of the integral
equation for the six-point Green’s function in the vicin-
ity of this pole. Section 4 is concerned with the reduction
of the full eight-dimensional Bethe-Salpeter equation to a
six-dimensional Salpeter equation by integrating out the
relative energy dependence of the full Bethe-Salpeter am-
plitudes. To this end, we use a covariant formulation of
the instantaneous approximation for three- and two-body
interaction kernels and assume that the full quark prop-
agators can be suitably approximated by their free forms
introducing effective constituent quark masses. In a first
step, taking only the genuine (instantaneous) three-body
kernels into account, we show how a straightforward re-
duction can then be performed, thus yielding a reduced
equation which may be formulated as an ordinary eigen-
value problem in Hamiltonian form, where the Hamilto-
nian is Hermitean with respect to a scalar product induced
by the normalization condition of the Salpeter amplitudes.
Complications arise for the more general case when also
genuine two-particle interactions are taken into account.
This case needs a special discussion and we demonstrate
that a reduction to a Salpeter equation in the same Hamil-
tonian form can nevertheless be achieved by deriving an
effective instantaneous three-body kernel which parame-
terizes all retardation effects of the unconnected two-body
interactions. In section 5 we present the Salpeter equation
in Born approximation of the quasi-potential which con-
stitutes the basic covariant equation of our model. We dis-
cuss the structure and main features of the Salpeter equa-
tion and its solutions with respect to the ordinary non-
relativistic quark model. Special features discussed in this
section are the one-to-one correspondence of the Salpeter
amplitudes to the states of the nonrelativistic quark model
and the additional antiparticle solutions of the Salpeter
equation. Finally we give a summary and conclusion in
section 6.

2 Green’s functions and Bethe-Salpeter
amplitudes

In nonrelativistic quantum mechanics, a bound state of
three particles is described by a normalized wave func-
tion satisfying the three-body Schrödinger equation. This
is in general the underlying equation for the descrip-
tion of baryons as bound states of three quarks in the
framework of the various phenomenological nonrelativis-
tic potential models. A more profound basis for describ-
ing bound states in relativistic quantum field theory is
the Bethe-Salpeter equation [3] for the so-called Bethe-
Salpeter amplitudes, which might be considered as the
covariant analogues of “wave functions” in the nonrela-
tivistic case. The Bethe-Salpeter equation has been first
derived for the two-particle system by Salpeter and Bethe
[3]. Taylor [4] investigated the application of the Bethe-
Salpeter equation to the three-body system.

In this section, we outline a method to treat the three-
fermion bound-state problem in relativistic quantum field
theory by using Green’s function techniques. This allows
to derive the Bethe-Salpeter equation for three bound
fermions simultaneously with the normalization condi-
tion of the corresponding Bethe-Salpeter amplitudes. The
method is based on the fact that in general a bound state
of elementary particles, whose fields appear in the under-
lying interaction Lagrangian, corresponds to a pole in the
total energy of the Feynman propagator (the Green’s func-
tion) of the many particle system. These poles do not arise
from single perturbative Feynman diagrams, but rather
from an infinite series of diagrams. In this context, the
Bethe-Salpeter amplitude is then defined as the residuum
of the bound-state pole of the Green’s function. This con-
nection between bound states and the singularities of the
Green’s functions was originally the basis of the first rig-
orous proof of the two-particle Bethe-Salpeter equation
given by Gell-Mann and Low [5]. However, this non per-
turbative approach is clearly general and can be applied
generically to the n-body Green’s function as shown for
instance in the textbook of Weinberg [6]. As mentioned
above, we apply this method to the case of three fermions
(quarks) only. It consists of the following three steps [7–9]:
1. The starting point is the six-point Green’s function de-

scribing the propagation of three interacting fermions.
In section 2.1 we analyze the structure of the usual
perturbative power series expansion of the three-quark
Feynman propagator: introducing the concept of irre-
ducible interaction kernels for the case of three parti-
cles in a manner similar to that of Salpeter and Bethe
in the two-particle case [3], we outline, how the infinite
power series can be rearranged into an inhomogeneous
integral equation.

2. In section 2.5 we examine the analytical structure of
the six-point Green’s function: we isolate the contri-
bution of a three-fermion bound state to the six-point
Green’s function and show, how the bound state gives
rise to a pole in the total energy variable (or in the
invariant total four-momentum squared). This proce-
dure defines the Bethe-Salpeter amplitudes of a spe-
cific bound state by the residue of the correspond-
ing bound-state pole which factorizes into the Bethe-
Salpeter amplitude and its adjoint.

3. Finally, by a Laurent expansion of the Green’s func-
tion in the vicinity of this bound-state pole and using
the results from sects. 2.1 and 2.5, we will derive a ho-
mogeneous integral equation for bound states, i.e. the
Bethe-Salpeter equation along with the normalization
condition of the corresponding amplitudes. This will
be done in section 3.

2.1 The six-point Green’s function for three fermions

The fundamental quantity describing three interacting
fermions in quantum field theory is the six-point Greens’s
function (or three-fermion Feynman propagator), which
is the vacuum expectation value of a time-ordered prod-
uct of three-fermion field operators Ψ i and their adjoints
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Ψ
i
:= Ψ i†γ0 in the Heisenberg picture:

Ga1a2a3; a′
1a′

2a′
3
(x1, x2, x3;x′

1, x
′
2, x

′
3) := (1)

−〈0| T Ψ1
a1
(x1)Ψ2

a2
(x2)Ψ3

a3
(x3)Ψ

1

a′
1
(x′

1)Ψ
2

a′
2
(x′

2)Ψ
3

a′
3
(x′

3)|0〉.

Here the ai = (αi, fi, ci) denote multi-indices combining
the indices of the quark fields αi in Dirac, fi in flavor and
ci in color space. |0〉 denotes the true physical vacuum
state and T is the time ordering operator acting on a gen-
eral n-fold product of Heisenberg fermion field operators
Ai = Ψ or Ψ , (i = 1, . . . , n) defined as

T
{
A1(x1)A2(x2) · · ·An(xn)

}
= sign(σ) T

{
Aσ(1)(xσ(1))Aσ(2)(xσ(2)) · · ·Aσ(n)(xσ(n))

}
:=

∑
σ∈Sn

sign(σ) Aσ(1)(xσ(1))Aσ(2)(xσ(2)) · · ·

· · ·Aσ(n)(xσ(n)) θ(x0
σ(1), x

0
σ(2), . . . , x

0
σ(n)), (2)

where the sum runs over all permutations σ ∈ Sn with
signum sign(σ). θ is a generalization of the usual Heaviside
function

θ(x0
1, x

0
2, . . . , x

0
n) =

{
1, for x0

1 ≥ x0
2 ≥ · · · ≥ x0

n,

0, otherwise.
(3)

Among other possibilities (depending on the time or-
dering considered) the six-point Green’s function G rep-
resents the probability amplitude for three (generally
off-shell) quarks to propagate from space-time points
x′

1, x
′
2, x

′
3 to x1, x2, x3. Using the technique of ordinary

time-dependent perturbation theory, the six-point Green’s
function G may be expressed in the form of an infinite
power series (see any standard textbook of quantum field
theory, for instance [10]):

G(x1, x2, x3;x′
1, x

′
2, x

′
3) =

−1
〈0|T exp

(
−i
∫ +∞
−∞ dt ĤIp(t)

)
|0〉

×
∞∑

k=1

(−i)k
k!

∫
d4y1 . . . d4yk〈0|TΨ1

Ip(x1)Ψ2
Ip(x2)Ψ3

Ip(x3)

×Ψ1

Ip(x
′
1)Ψ

2

Ip(x
′
2)Ψ

3

Ip(x
′
3)ĤIp(y1) . . . ĤIp(yk)|0〉. (4)

Now, the state |0〉 represents the unperturbed vacuum and
ΨIp, Ψ̄Ip, ĤIp and ĤIp are the field operators, the inter-
action Hamiltonian and the Hamiltonian density operator
in the interaction picture, respectively.

2.2 The integral equation for the six-point Green’s
function

Using Wick’s theorem for time-ordered products of field
operators, the right-hand side of eq. (4) may be evalu-
ated order-by-order (in the coupling constant) to obtain a
power series expansion which may be represented in terms

=G ++

+ + +

+

+ ...+

Fig. 1. Finite-order perturbative contributions to the six-point
Green’s function G.

of ordinary Feynman graphs describing the interaction of
two or three fermions in finite order (see fig. 1).

In scattering processes (at high energy), where neither
a three-body bound state nor a two-body bound state in
any of the two-particle subsystems occurs, only a finite set
of diagrams may be taken into consideration. The inves-
tigation of bound states, however, requires to go beyond
such a perturbative approach, i.e. an infinite sum of dia-
grams (or at least an infinite subset of diagrams) has to
be taken into account. The reason for this is that, e.g.,
a three-body bound state leads to a pole of the Green’s
function in the total energy variable, as we will see in sect.
2.5. But such a pole never arises from a finite set of Feyn-
man diagrams alone. To go beyond perturbation theory,
one recasts the infinite power series expansion (4) in the
form of an inhomogeneous integral equation, as was done
by Bethe and Salpeter [3] for the case of two particles.
Let us briefly sketch this procedure for the case of three
fermions:

1) One introduces the concept of irreducibility, i.e. one
classifies all those diagrams appearing in the power ex-
pansion series (4) in reducible and irreducible graphs. For
the definition of (ir)reducibility in the case of three in-
teracting particles we distinguish two- and three-particle
interactions:
– A connected two-fermion interaction graph is called
irreducible, if it cannot be split into two simpler graphs
by cutting two fermion lines only. Some examples of
irreducible two-body diagrams are shown in fig. 2.

– Correspondingly, a connected three-fermion interac-
tion is called irreducible, if it cannot be separated into
two simpler graphs by just cutting three fermion lines.
Examples of such graphs are given in fig. 3.

– All other interaction graphs are called reducible.
Clearly, due to the above definitions of irreducibility,
reducible diagrams can always be cut into irreducible
parts.
2) The (infinite) sum of all irreducible connected two-

particle graphs is collected into the so-called irreducible
two-particle interaction kernel

K
(2)
a1a2; a′

1a′
2
(x1, x2;x′

1, x
′
2). (5)

See fig. 2 for a diagrammatic representation of K(2). Sim-
ilarly, all irreducible connected three-particle graphs are
added up to the so-called irreducible three-particle inter-
action kernel

K
(3)
a1a2a3; a′

1a′
2a′

3
(x1, x2, x3;x′

1, x
′
2, x

′
3). (6)
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Fig. 2. Graphical representation of the two-particle irreducible
Bethe-Salpeter kernel K(2) as sum of all possible connected
irreducible two-particle interactions.

3
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-iK += + ...+ +
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Fig. 3. Diagrammatic picture of the three-particle irreducible
Bethe-Salpeter kernel K(3) as sum of all possible connected
irreducible three-particle interactions.
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SF
i

++ += + + ...+

′

Fig. 4. Perturbation series of the full dressed quark propaga-
tors defined in eq. (7).

A graphical picture of K(3) is shown in fig. 3. The argu-
ments x′

i, xi and multi-indices a′i, ai in (5) and (6) indicate
the coordinate space and the Dirac, flavor and color space
dependences of the kernels, respectively.

3) Apart from the connected two- and three-particle
interactions, applying Wick’s theorem to the right-hand
side of eq. (4) also generates unconnected terms, as, e.g.,
the bare quark propagators, but moreover all kinds of self-
energy contributions to the single fermion lines of each
quark, summing up to the full quark propagators

Si
F aia′

i
(xi, x

′
i) = 〈0|TΨ i

ai
(xi)Ψ

i

a′
i
(x′

i)|0〉, (7)

as indicated in fig. 4.

4) All reducible interaction diagrams of any desired
order appearing in the power series expansion can now
be generated by iteration of the irreducible two-particle
(in each quark pair) and three-particle interaction kernels
K(2) and K(3) using the full quark propagators Si

F for the
inner fermion lines. This is accomplished to all orders by
virtue of the following inhomogeneous integral equation,
which uses the two- and three-particle interaction kernels
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Fig. 5. Graphical illustration of the inhomogeneous inte-
gral equation (8) for the six-point Green’s function G. K(3)

and K(2) denote the irreducible three- and two-body Bethe-
Salpeter kernels, respectively, represented graphically in figs. 2
and 3. Thick arrows on quark lines indicate full dressed quark
propagators as shown diagrammatically in fig. 4.

as integral kernels [4,3], i.e.

Ga1a2a3; a′
1a′

2a′
3
(x1, x2, x3;x′

1, x
′
2, x

′
3) =

S1
F a1a′

1
(x1, x

′
1) S

2
F a2a′

2
(x2, x

′
2) S

3
F a3a′

3
(x3, x

′
3)

−i
∫

d4y1 d4y2 d4y3 S1
F a1b1(x1, y1) S2

F a2b2(x2, y2)

×S3
F a3b3(x3, y3)

×
∫
d4y′1 d

4y′2 d
4y′3 K

(3)
b1b2b3; b′1b′2b′3

(y1, y2, y3; y′1, y
′
2, y

′
3)

×Gb′1b′2b′3; a′
1a′

2a′
3
(y′1, y

′
2, y

′
3;x

′
1, x

′
2, x

′
3)

−i
∑

cycl.Perm.
(123)

∫
d4y1 d4y2 S1

F a1b1(x1, y1) S2
F a2b2(x2, y2)

×
∫

d4y′1 d
4y′2 K

(2)
b1b2; b′1b′2

(y1, y2; y′1, y
′
2)

×Gb′1b′2a3; a′
1a′

2a′
3
(y′1, y

′
2, x3;x′

1, x
′
2, x

′
3), (8)

where our notation implies summation over indices bi, b′i
occurring twice. For a diagrammatic illustration of this
integral equation, see fig. 5. In fact, the Neumann iteration
of this integral equation reproduces all possible reducible
interactions and thus precisely all the terms of the power
series expansion of eq. (4).

Note that also the irreducible interaction kernels K(2)

and K(3) consist already of an infinite number of graphs
and in general cannot be calculated exactly. They are ba-
sically unknown functions and thus have to be parameter-
ized phenomenologically. However, the decisive advantage
of the non-perturbative construction of the Green’s func-
tion G from an inhomogeneous integral equation (8) is
that its solution automatically implies an infinite num-
ber of interactions even if the kernels are approximated
by their lowest-order Born terms, which constitutes the
so-called ladder approximation. Such an approximation
is sufficient in theories, where the coupling constant is
small and the interaction kernels may be considered as an
asymptotic series expanded in terms of the (small) cou-
pling constant. (In such a case one would expect most of
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iK

=: iK
(2)

=
(3)

(2)

+
iK

S
F
-1

Σ
cycl. perm.

iK

Fig. 6. The integral kernel K combining the three-body ir-
reducible kernel and the two-body irreducible kernels in each
quark pair; the filled circle denotes an inverse full quark prop-
agator.

the binding of a bound state to come from the repeated
action of the Born diagrams alone.)

For further discussion of eq. (8) it is useful to introduce
an appropriate compact notation. First let us combine the
irreducible two- and three-body kernels K(2) and K(3) to
a single integral kernel K. We introduce the inverse Sk

F

−1

of the full quark propagator Sk
F by∫

d4yk Sk
F akb(xk, yk) Sk

F

−1

ba′
k
(yk, x

′
k) = δaka′

k
δ(4)(xk−x′

k).

(9)

This allows to rewrite the sum of the two-particle interac-
tions K(2) in each quark pair in the form of a three-body
kernel

K
(2)

a1a2a3; a′
1a′

2a′
3
(x1, x2, x3;x′

1, x
′
2, x

′
3) :=∑

(ijk)=

cycl.perm.of

(123)

K
(2)
aiaj ; a′

ia
′
j
(xi, xj ;x′

i, x
′
j) S

k
F

−1

aka′
k
(xk, x

′
k). (10)

In this form we can combine the two-body interaction ker-
nels with the three-body kernel K(3) to a uniform integral
kernel K (see fig. 6):

K := K(3) +K
(2)

. (11)

Moreover, we introduce the symbol G0 for the triple ten-
sor product of the single quark propagators Si

F which is
the lowest order contribution to G:

G0 a1a2a3; a′
1a′

2a′
3
(x1, x2, x3;x′

1, x
′
2, x

′
3) :=

S1
F a1a′

1
(x1, x

′
1) S

2
F a2a′

2
(x2, x

′
2) S

3
F a3a′

3
(x3, x

′
3). (12)

Finally, we define a shorthand operator product notation
for the summation over indices and the integral operation
in coordinate space:

[AB]a1a2a3; a′
1a′

2a′
3
:=
∑

b1b2b3

Aa1a2a3;b1b2b3 Bb1b2b3;a′
1a′

2a′
3
, (13)

[A B] (x1, x2, x3;x′
1, x

′
2, x

′
3) :=∫

d4y1d4y2d4y3 A(x1, x2, x3; y1, y2, y3)

×B(y1, y2, y3;x′
1, x

′
2, x

′
3). (14)

With these definitions the inhomogeneous integral equa-
tion for the six-point Green’s function can be represented
in the more compact form of an operator equation

G = G0 − i G0 K G. (15)

Note that this integral equation for the Green’s function
G can also be written in its equivalent adjoint form, where
the operator product G0 K G on the right-hand side of
eq. (15) appears in reverse order:

G = G0 − i G K G0. (16)

The equivalence of the integral equation (15) and its ad-
joint (16) is obvious, since both equations have the same
Neumann series.

2.3 Space-time translational invariance

The six-point Green’s function G as defined in eq. (1) is
invariant under arbitrary space-time translations, i.e.

G(x1, x2, x3;x′
1, x

′
2, x

′
3) =

G(x1 + a, x2 + a, x3 + a;x′
1 + a, x′

2 + a, x′
3 + a) (17)

for all a ∈ IR4. Due to this symmetry it is natural to
introduce new coordinates, namely an external “center-
of-mass” coordinate X and internal, i.e. translationally
invariant, relative coordinates ξ and η, the so-called Jacobi
coordinates. We choose

X := 1
3 (x1 + x2 + x3),

ξ := x1 − x2,

η := 1
2 (x1 + x2 − 2x3),

⇔

x1 = X + 1
2ξ +

1
3η,

x2 = X − 1
2ξ +

1
3η,

x3 = X − 2
3η.

(18)

The space-like components X, ξ and η of these variables
can be interpreted in the non-relativistic limit as usual
center-of-mass and relative coordinates for a system of
three particles with equal mass. However, in a covariant
framework this choice is a priori arbitrary and the vari-
ables X, ξ and η have in general no direct physical mean-
ing. Choosing now specifically a := −1

2 (X + X ′) in eq.
(17) we find that in fact the six-point Green’s function G
depends only on translationally invariant coordinate dif-
ferences X −X ′, ξ, η, ξ′ and η′, i.e.

G(x1, x2, x3; x′
1, x

′
2, x

′
3) ≡ G(X −X ′; ξ, η; ξ′, η′). (19)

Of course, the same holds also for the triple product G0

of the free single quark propagators, and the translation
invariance of the Green’s function G necessarily implies
that in particular the interaction kernels K(3) and K

(2)

must by themselves be translationally invariant quanti-
ties. In momentum space space-time translation invari-
ance is equivalent to the conservation of the total four-
momentum. Consequently, as will be shown in the follow-
ing subsection, the twelve-dimensional integral equations
(15) for the six-point Green’s function in coordinate space
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and its adjoint (16) after Fourier transformation become
only eight-dimensional integral equations in the momen-
tum space representation. Due to momentum conserva-
tion, these momentum space representations depend only
parametrically on the total four-momentum. To perform
the Fourier transformation let us define the correspond-
ing conjugate momenta to X, ξ and η which are given
by the total four-momentum P and the following relative
four-momenta pξ and pη:

P := p1 + p2 + p3,

pξ := 1
2 (p1 − p2),

pη := 1
3 (p1 + p2 − 2p3),

⇔

p1 = 1
3P + pξ + 1

2pη,

p2 = 1
3P − pξ + 1

2pη,

p3 = 1
3P − pη.

(20)

The new sets of coordinates (18) and (20) satisfy the con-
dition

〈p1, x1〉+ 〈p2, x2〉+ 〈p3, x3〉 = 〈P,X〉+ 〈pξ, ξ〉+ 〈pη, η〉,
(21)

and a technical advantage of this special choice of variables
is that the Jacobians of the transformations (18) and (20)
are unity, i.e.∣∣∣∣ ∂(X, ξ, η)

∂(x1, x2, x3)

∣∣∣∣ = 1 and
∣∣∣∣ ∂(P, pξ, pη)
∂(p1, p2, p3)

∣∣∣∣ = 1. (22)

2.4 Momentum space representation of the integral
equation

For any six-point function A = G, G0, K, K
(2)

and K(3),
i.e. the six-point Green’s function, the triple product of
quark propagators or the interaction kernels, we define
the Fourier transform by

[FA] (p1, p2, p3; p′1, p
′
2, p

′
3) :=∫

d4x1 d4x2 d4x3 e
+i(〈p1,x1〉+〈p2,x2〉+〈p3,x3〉)

×
∫

d4x′
1 d

4x′
2 d

4x′
3 e

−i(〈p′
1,x′

1〉+〈p′
2,x′

2〉+〈p′
3,x′

3〉)

×A(x1, x2, x3;x′
1, x

′
2, x

′
3). (23)

Using the properties (21) and (22) of the new coordinate
sets, the Fourier transforms can be written in terms of
relative Jacobi momenta and the total four-momenta,

[FA] (p1, p2, p3; p′1, p
′
2, p

′
3) =

AP (pξ, pη; p′ξ, p
′
η) (2π)

4δ(4)(P − P ′). (24)

Due to the translational invariance of the six-point func-
tions A the δ-function reflects the conservation P ′ = P
of total four-momentum. The remaining part AP , just de-
pending parametrically on P , is defined by the following

Fourier transformation:

A(x1, x2, x3;x′
1, x

′
2, x

′
3) ≡ A(X −X ′; ξ, η; ξ′, η′)

=:
∫

d4P

(2π)4
e−i〈P,X−X′〉

∫
d4pξ

(2π)4
d4pη

(2π)4
e−i〈pξ,ξ〉 e−i〈pη,η〉

×
∫ d4p′ξ

(2π)4
d4p′η
(2π)4

ei〈p
′
ξ,ξ′〉ei〈p

′
η,η′〉 AP (pξ, pη; p′ξ, p

′
η),(25)

which exhibits the exclusive dependence on the relative
coordinates X−X ′, ξ, η, ξ′ and η′. The momentum space
representation G0P of the quark propagators G0 then
reads explicitly

G0P (pξ, pη; p′ξ, p
′
η) =

S1
F

(
1
3P+pξ+ 1

2pη

)
⊗ S2

F

(
1
3P−pξ+ 1

2pη

)
⊗ S3

F

(
1
3P−pη

)
× (2π)4 δ(4)(pξ − p′ξ) (2π)4 δ(4)(pη − p′η), (26)

where (due to translational invariance) the Fourier trans-
forms of the single quark propagators are defined by

Si
F(xi, x

′
i) = Si

F(xi − x′
i) =:

∫
d4pi

(2π)4
e−i〈pi,xi−x′

i〉 Si
F(pi).

(27)

For the sake of completeness we should also specify the
explicit form of the Fourier transform K

(2)

P of the two-
particle term K

(2)
defined in eq. (10). To this end we first

have to define the Fourier transform of the two-particle
interaction kernel K(2)(xi, xj ; x′

i, x
′
j). According to trans-

lational invariance, it is useful to introduce two-particle
“center of mass” and relative coordinates Xk and ξk for
each possible quark pair (ij), i.e.

Xk :=
1
2
(xi + xj),

ξk := xi − xj , for (ijk) = cycl. perm. of (123), (28)

as well as their corresponding conjugate variables, the to-
tal two-particle momenta Pk and the relative momenta
pξk

, i.e.

Pk := pi + pj =
2
3
P + pηk

,

pηk
:=

1
3
(pi + pj − 2pk),

pξk
:=

1
2
(pi − pj), for (ijk) = cycl. perm. of (123). (29)

Note that we have expressed Pk by the total three-particle
momentum P and an additional variable pηk

in order
to relate the sets (Pk, pξk

) of two-particle momenta to
the set (20) of relative three-particle momenta (pξ, pη) =
(pξ3 , pη3) in the case (ijk) = (123) and to the equiva-
lent cyclically permuted sets (pξ1 , pη1) and (pξ2 , pη2) in
the cases (ijk) = (231) and (312), respectively. The cycli-
cally permuted sets of the relative momenta are obtained
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by linear transformations of the existing set (20) according
to (

pξ

pη

)
=

(
pξ3

pη3

)
=

(− 1
2 −

3
4

1 − 1
2

)(
pξ1

pη1

)
=

(− 1
2

3
4

−1 − 1
2

)(
pξ2

pη2

)
. (30)

When K(2) depends on translationally invariant two-
particle variables only, the Fourier transform of K(2) is
given as

K(2)(xi, xj ;x′
i, x

′
j) = K(2)(Xk −X ′

k; ξk, ξ
′
k) =:∫

d4Pk

(2π)4
e−i〈Pk,Xk−X′

k〉
∫

d4pξk

(2π)4
e−i〈pξk

,ξk〉

×
∫ d4p′ξk

(2π)4
ei〈p

′
ξk

,ξ′
k〉 K(2)

Pk
(pξk

, p′ξk
). (31)

Using the definition (10) of K
(2)

and the definitions (25)
and (31) of the Fourier transforms of K

(2)
and K(2), we

find the following explicit form for K
(2)

P :

K
(2)

P a1a2a3; a′
1a′

2a′
3
(pξ, pη; p′ξ, p

′
η) =∑

(ijk)=
(123),(231),(312)

K
(2)

( 2
3 P+pηk

) aiaj ; a′
ia

′
j

(pξk
, p′ξk

)

×Sk
F

−1

aka′
k

(
1
3P − pηk

)
(2π)4 δ(4)(pηk

− p′ηk
), (32)

where Sk
F

−1(pk) is the momentum space representation of
the inverse of the full quark propagator defined in eq. (9),
which obeys∑

bk

Sk
Fakbk

(pk) Sk
F

−1

bka′
k
(pk) = δaka′

k
. (33)

With definition (25) of the Fourier transforms of G, G0

and K, the properties (21) and (22) of the Jacobi coor-
dinates and the explicit form (26) of G0P , we are now in
the position to write the inhomogeneous integral equation
(15) for the six-point Green’s function G in its momentum
space representation,

GP (pξ, pη; p′ξ, p
′
η) =

S1
F

(
1
3P+pξ+ 1

2pη

)
⊗ S2

F

(
1
3P−pξ+ 1

2pη

)
⊗ S3

F

(
1
3P−pη

)
× (2π)4 δ(4)(pξ − p′ξ) (2π)4 δ(4)(pη − p′η)

+S1
F

(
1
3P+pξ+ 1

2pη

)
⊗ S2

F

(
1
3P−pξ+ 1

2pη

)
⊗ S3

F

(
1
3P−pη

)
× (−i)

∫ d4p′′ξ
(2π)4

d4p′′η
(2π)4

KP (pξ, pη; p′′ξ , p
′′
η)GP (p′′ξ , p

′′
η ; p

′
ξ, p

′
η),

(34)

where we suppressed the dependences on the indices using
the shorthand tensor notation and the definition (13) of

the operator product. Note that, due to the conservation
of the total four-momentum, the inhomogeneous integral
equation depends only parametrically on the total four-
momentum P , while the integral operation involves only
the relative momenta pξ and pη. Let us therefore intro-
duce the momentum space representation of the operator
product corresponding to (14) as

[AP BP ] (pξ, pη; p′ξ, p
′
η) :=∫ d4p′′ξ

(2π)4
d4p′′η
(2π)4

AP (pξ, pη; p′′ξ , p
′′
η)BP (p′′ξ , p

′′
η ; p

′
ξ, p

′
η), (35)

which again allows to write the momentum space repre-
sentations of the integral equation (15) and its adjoint (16)
in a concise operator notation:

GP = G0P − i G0P KP GP , (36)

GP = G0P − i GP KP G0P , (37)

with the subscript P indicating the parametrical depen-
dence on the total four-momentum, which becomes im-
portant in the next two sections for the investigation of
bound-state contributions to G. Accordingly, we will eval-
uate eqs. (36) and (37) at the positions P = P̄ , where
bound states with mass M2 = P̄ 2 occur, allowing the
derivation of the bound state Bethe-Salpeter equation and
the normalization condition of the corresponding ampli-
tudes. But to this end we first have to know how the six-
point Green’s function behaves at these bound-state pole
positions. This is the topic of the next subsection.

2.5 Bound-state contributions – Bethe-Salpeter
amplitudes

In quantum field theory bound states are related to the
occurrence of poles of the Green’s functions in the total
energy variable P 0 or, equivalently, in the invariant four-
momentum squared P 2. Here we verify this statement for
the case of the six-point Green’s function GP .

In the following we consider bound states of three
quarks with (positive) mass M and positive energy ωP :=√

P2 +M2. The corresponding Fock states with total
four-momentum P̄ = (ωP,P) and mass P̄ 2 = M2 are
denoted by |P̄ 〉. They are eigenstates of the total four-
momentum operator P̂ = p̂1 + p̂2 + p̂3, i.e.

P̂ |P̄ 〉 = P̄ |P̄ 〉, (38)

and are normalized covariantly according to

〈P̄ |P̄ ′〉 = (2π)3 2ωP δ(3)(P−P′). (39)

The six-point Green’s function (1) in general describes
all possible kinds of processes with three incoming and
three outgoing fermions. The “initial” and “final” fermion
or antifermion lines, however, are not yet fixed, until a
particular time-ordering has been chosen. Here we are
interested in the extraction of “baryon” contributions
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to G, i.e. real bound states of three quarks with posi-
tive energy that propagate forward in time. Therefore we
shall consider those specific contributions to the six-point
Green’s function G which have the particular time order-
ings x0

1, x
0
2, x

0
3 > x′0

1 , x
′0
2 , x

′0
3 , i.e. which contain

θ
(
min(x0

1, x
0
2, x

0
3)−max(x′0

1, x
′0
2, x

′0
3)
)
={

1, for x0
1, x

0
2, x

0
3 > x′0

1, x
′0
2, x

′0
3,

0, otherwise.
(40)

Isolating this part of the Green’s function defined in
eq. (1), we have

Ga1a2a3; a′
1a′

2a′
3
(x1, x2, x3;x′

1, x
′
2, x

′
3) =

−〈0|T
{
Ψ1

a1
(x1)Ψ2

a2
(x2)Ψ3

a3
(x3)

}
× T

{
Ψ

1

a′
1
(x′

1)Ψ
2

a′
2
(x′

2)Ψ
3

a′
3
(x′

3)
}
|0〉

× θ
(
min(x0

1, x
0
2, x

0
3)−max(x′0

1, x
′0
2, x

′0
3)
)

+other terms arising from different time-orderings.(41)

Now we can evaluate that contribution to the Green’s
function which arises from three-quark bound states (38)
with massM , by inserting the complete set of the interme-
diate states |P̄ 〉 in between the two time-ordered products
in the matrix element (41):

Ga1a2a3; a′
1a′

2a′
3
(x1, x2, x3;x′

1, x
′
2, x

′
3) =

−
∫

d3P

(2π)3 2ωP
〈0| T Ψ1

a1
(x1)Ψ2

a2
(x2)Ψ3

a3
(x3)|P̄ 〉

×〈P̄ | T Ψ
1

a′
1
(x′

1)Ψ
2

a′
2
(x′

2)Ψ
3

a′
3
(x′

3)|0〉

× θ
(
min(x0

1, x
0
2, x

0
3)−max(x′0

1, x
′0
2, x

′0
3)
)

+ other terms. (42)

Here “other terms” now denotes the terms not only arising
from other time-orderings, but also from other intermedi-
ate states.

We define the Bethe-Salpeter amplitude χP̄ for the
bound state |P̄ 〉 and its adjoint χP̄ by the following tran-
sition amplitudes between the state |P̄ 〉 and the vacuum
|0〉:

χP̄ a1a2a3
(x1, x2, x3) := 〈0| T Ψ1

a1
(x1)Ψ2

a2
(x2)Ψ3

a3
(x3) |P̄ 〉,

(43)

χP̄ a′
1a′

2a′
3
(x′

1, x
′
2, x

′
3) := 〈P̄ |T Ψ

1

a′
1
(x′

1)Ψ
2

a′
2
(x′

2)Ψ
3

a′
3
(x′

3) |0〉,
(44)

which appear in the bound-state contribution (42) to the
Green’s function G. Due to translational invariance we can
factorize the total momentum dependence of the Bethe-
Salpeter amplitude χP̄ and its adjoint χP̄ which con-

tributes just by a trivial phase factor:

χP̄ (x1, x2, x3) = e−i〈P̄ ,X〉 χP̄ (ξ, η) =:

e−i〈P̄ ,X〉
∫

d4pξ

(2π)4
d4pη

(2π)4
e−i〈pξ,ξ〉 e−i〈pη,η〉 χP̄ (pξ, pη), (45)

χP̄ (x
′
1, x

′
2, x

′
3) = ei〈P̄ ,X′〉 χP̄ (ξ

′, η′) =:

ei〈P̄ ,X′〉
∫ d4p′ξ
(2π)4

d4p′η
(2π)4

ei〈p
′
ξ,ξ′〉 ei〈p

′
η,η′〉 χP̄ (p

′
ξ, p

′
η). (46)

Thus, we obtain translationally invariant Bethe-Salpeter
amplitudes and their Fourier transforms which depend
only on the internal relative coordinates ξ, η and pξ, pη,
respectively.

The θ-function in eq. (42), which dictates the specific
time ordering x0

1, x
0
2, x

0
3 > x′0

1 , x
′0
2 , x

′0
3 , gives rise to a pole

of G in the total energy variable P 0 and we finally arrive
at the following Laurent expansion of GP in momentum
space near the pole at P 0 = ωP:

GP (pξ, pη; p′ξ, p
′
η) =

−i
2ωP

χP̄ (pξ, pη) χP̄ (p′ξ, p
′
η)

P 0 − ωP + iε
+ regular terms for P 0 → ωP, (47)

or written covariantly

GP (pξ, pη; p′ξ, p
′
η) = −i

χP̄ (pξ, pη)χP̄ (p′ξ, p
′
η)

P 2 −M2 + iε
+ regular terms for P 2 →M2, (48)

where we have introduced a six-point function [χP̄ χP̄ ] by
the separable product of the Bethe-Salpeter amplitudes
allowing us to suppress the dependence on indices in (47)
and (48):[

χP̄ (pξ, pη) χP̄ (p
′
ξ, p

′
η)
]

a1a2a3; a′
1a′

2a′
3

:=

χP̄ a1a2a3
(pξ, pη) χP̄ a′

1a′
2a′

3
(p′ξ, p

′
η). (49)

This typical analytical structure of the six-point
Green’s function GP in the vicinity of the bound-state
P ≈ P̄ enables us to isolate the three-fermion bound-
state contributions and to extract the relevant quantity
describing the bound states, namely the Bethe-Salpeter
amplitude χP̄ . In summary:

– We see that a three-fermion bound state with mass M
indeed gives rise to a first order pole in the total three-
body energy P 0 at the bound-state energy P 0 → ωP =√

P2 +M2 or, equivalently, P 2 → M2, P 0 > 0. This
analytical dependence of GP on P is a useful criterion
to identify bound states. Note that it is just the Fourier
transform of the θ-function, due to the particular time-
ordering (40), which causes this singularity.

– A further striking feature is that the Green’s func-
tion becomes separable on the mass shell of the bound
state, i.e. the dependence on the relative momenta and
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P2- + i εM 2
-i

χ=G
M

2
P

2
lim χ

_

Baryon
(bound state)

Fig. 7. The behavior of the six-point Green’s function G in
the vicinity of a three-quark bound-state pole of a baryon with
mass M : Via the adjoint Bethe-Salpeter amplitude χP̄ as “ver-
tex” (right halved bubble) the three (off-shell) quarks form a
bound state (baryon), which then propagates by means of the
propagator ∼ (P 2 −M2+iε)−1 (denoted by the threefold line)
and finally “decays” again via the “vertex” given by the Bethe-
Salpeter amplitude χP̄ (left halved bubble) into three off-shell
quarks.

also in the indices for the three incoming and outgo-
ing quarks separates; the product of both parts, which
corresponds to the residuum of the six-point-Green’s
function at the baryon pole P 0 → ωP, just defines
the Bethe-Salpeter amplitude and its adjoint, see also
fig. 7:

Res|P0=ωP
GP a1a2a3; a′

1a′
2a′

3
(pξ, pη; p′ξ, p

′
η) =

−i
2ωP

χP̄ a1a2a3
(pξ, pη) χP̄ a′

1a′
2a′

3
(p′ξ, p

′
η). (50)

Evaluating the inhomogeneous integral equation (36)
for the six-point Green’s function GP at the bound-state
pole and using this special behavior (50) of GP at this pole
position will allow to derive the Bethe-Salpeter equation
for the Bethe-Salpeter amplitudes and the corresponding
normalization condition. This will be shown in the next
section.

3 Bethe-Salpeter equation and normalization
condition

With the results of the foregoing sections, we are now in
the position to derive

– the Bethe-Salpeter equation for the Bethe-Salpeter
amplitudes, which is an homogeneous integral equa-
tion describing the bound states relativistically,

– the normalization of the Bethe-Salpeter amplitudes.

This can be done simultaneously in a simple and appealing
way by a Laurent expansion of the inhomogeneous integral
equations (36) and (37) for the six-point Green’s function
GP in the total energy variable P 0 around the bound-
state pole at P = P̄ . To this end it is convenient to bring
the integral equation (36) and its adjoint (37) into the
equivalent forms[

G0
−1
P + i KP

]
GP = 1I, (51)

GP

[
G0

−1
P + i KP

]
= 1I, (52)

where the dependence on the four-momentum P appears
only on the left-hand side. Here 1I is the identity for the
operator product (35), which reads explicitly

1Ia1a2a3; a′
1a′

2a′
3
(pξ, pη; p′ξ, p

′
η) :=

δa1a′
1
δa2a′

2
δa3a′

3
(2π)4 δ(4)(pξ−p′ξ) (2π)4 δ(4)(pη−p′η), (53)

and the operator G0
−1
P is the inverse of G0P with respect

to this operator product, which thus obeys G0
−1
P G0 =

G0 G0
−1
P = 1I. It is given by the triple product of the

inverse quark propagators

G0
−1
P (pξ, pη; p′ξ, p

′
η) = S1

F
−1( 1

3P + pξ + 1
2pη

)
⊗S2

F
−1( 1

3P − pξ + 1
2pη

)
⊗ S3

F
−1( 1

3P − pη

)
× (2π)4 δ(4)(pξ − p′ξ) (2π)4 δ(4)(pη − p′η). (54)

Equations (51) and (52) imply that GP is the resolvent of
a pseudo-Hamiltonian

HP := G0
−1
P + i KP , (55)

i.e.

HP GP = GP HP = 1I. (56)

In order to obtain an equation for the Bethe-Salpeter am-
plitudes and their normalization condition from (56), we
use the analytical dependence of the six-point Green’s
function GP on P in the vicinity of the bound-state pole
at P̄ derived in the preceding subsection. Therefore, we
perform an expansion of the Green’s function GP and the
pseudo-Hamiltonian HP in the variable P 0 around the
bound-state energy ωP. Due to eq. (47) we find a Laurent
expansion of the Green’s function GP beginning with the
first-order singularity1,

GP =
−i
2ωP

χP̄ χP̄

P 0 − ωP + iε
+

∂

∂P 0

(
P 0 − ωP

)
GP

∣∣∣∣
P 0=ωP

+ O
(
P 0 − ωP

)
. (57)

and analogously for the operator HP we have the Taylor
series expansion

HP = HP̄ +
∂

∂P 0
HP

∣∣∣∣
P 0=ωP

(
P 0− ωP

)
+O

((
P 0− ωP

)2)
.

(58)

Inserting both expansions (57) and (58) into eq. (56), then
yields the following Laurent expansion of the operator
equation HP GP = 1I up to the first order:

see equation (59) next page

Comparing the expansion coefficients of each order in (59),
we obtain simultaneously the equation for the amplitudes
χP̄ , i.e. the Bethe-Salpeter equation, and the normaliza-
tion condition.

1 Note that with our notation P̄ = (ωP,P) and P = (P 0,P)
the Bethe-Salpeter amplitudes χP̄ and χP̄ do not depend on
P 0, as they are on-shell amplitudes by definition.
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− i

2ωP
HP̄ [χP̄ χP̄ ]

(
P 0 − ωP + iε

)−1
order −1

+ HP̄

[
∂

∂P 0

[(
P 0 − ωP

)
GP

]]
P0=ωP

− i

2ωP

[
∂

∂P 0
HP

]
P0=ωP

χP̄ χP̄ order 0

+ O
(
P 0 − ωP

)
orders ≥ 1

= 1I order 0

(59)

3.1 The Bethe-Salpeter equation for three bound
fermions

The expansion coefficients in the Laurent series (59) of the
order (P 0 − ωP)−1 yield

HP̄ [χP̄ χP̄ ] = 0. (60)

Now the factorization property of the pole residue be-
comes crucial: due to the separability (50) of the product
χP̄ χP̄ the operation (35) of HP acts only on the indices
and relative momenta of χP̄ , while χP̄ remains unaffected,
thus producing the Bethe-Salpeter equation for the Bethe-
Salpeter amplitude χP̄ :

HP̄ χP̄ = 0. (61)

Here the operator product of a six-point function HP with
a three-point function χP̄ is defined, analogous to (35), as

[HP̄ χP̄ ]a1a2a3
(pξ, pη) :=

∫ d4p′ξ
(2π)4

d4p′η
(2π)4

HP̄ a1a2a3; a′
1a′

2a′
3
(pξ, pη; p′ξ, p

′
η) χP̄ a′

1a′
2a′

3
(p′ξ, p

′
η). (62)

In the same fashion the corresponding Laurent expansion
of the adjoint equationGPHP = 1I gives the adjoint Bethe-
Salpeter equation for the adjoint amplitude2 χP̄ :

χP̄ HP̄ = 0. (63)

Inserting definition (55) for HP̄ and multiplying by G0P̄ ,
we bring the Bethe-Salpeter equation and its adjoint into
their more conventional form

χP̄ = −i G0P̄ KP̄ χP̄ ,

χP̄ = −i χP̄ KP̄ G0P̄ ,
with KP̄ = K

(3)

P̄
+K

(2)

P̄ . (64)

The three-body Bethe-Salpeter equation is a covariant
eight-dimensional homogeneous integral equation in the
variables pξ = (p0

ξ ,pξ) and pη = (p0
η,pη) describing the

2 Here the operator product is defined similar to (62) but
with summation and integration over indices and momenta
that appear on the left in HP̄ .

properties of bound states. It reads explicitly:

χP̄ a1a2a3
(pξ, pη) =

S1
F a1a′

1

(
1
3 P̄ + pξ + 1

2pη

)
S2

F a2a′
2

(
1
3 P̄ − pξ + 1

2pη

)
×S3

F a3a′
3

(
1
3 P̄ − pη

)
(−i)

∫ d4p′ξ
(2π)4

d4p′η
(2π)4

K
(3)

P̄ a′
1a′

2a′
3; a′′

1 a′′
2 a′′

3
(pξ, pη; p′ξ, p

′
η) χP̄ a′′

1 a′′
2 a′′

3
(p′ξ, p

′
η)

+ S1
F a1a′

1

(
1
3 P̄ + pξ + 1

2pη

)
S2

F a2a′
2

(
1
3 P̄ − pξ + 1

2pη

)
×(−i)

∫ d4p′ξ
(2π)4

K
(2)

( 2
3 P̄+pη) a′

1a′
2; a

′′
1 a′′

2
(pξ, p

′
ξ)χP̄ a′′

1 a′′
2 a3

(p′ξ, pη)

+ S1
F a1a′

1

(
1
3 P̄ + pξ + 1

2pη

)
S3

F a3a′
3

(
1
3 P̄ − pη

)
× (−i)

∫ d4p′ξ2

(2π)4
K

(2)

( 2
3 P̄+pη2 ) a′

1a′
3; a′′

1 a′′
3
(pξ2 , p

′
ξ2
)

× χP̄ a′′
1 a2a′′

3

(
− 1

2p
′
ξ2
+ 3

4pη2 ,−p′ξ2
− 1

2pη2

)
+ S2

F a2a′
2

(
1
3 P̄ − pξ + 1

2pη

)
S3

F a3a′
3

(
1
3 P̄ − pη

)
× (−i)

∫ d4p′ξ1

(2π)4
K

(2)

( 2
3 P̄+pη1 ) a′

2a′
3; a′′

2 a′′
3
(pξ1 , p

′
ξ1
)

×χP̄ a1a′′
2 a′′

3

(
− 1

2p
′
ξ1
− 3

4pη1 , p
′
ξ1
− 1

2pη1

)
. (65)

Recall that the two sets (pξ1 , pη1) and (pξ2 , pη2) of rela-
tive momenta are related to the standard set (pξ, pη) =
(pξ3 , pη3) by cyclic permutations of the quark momenta
represented by the linear transformations (30). The Bethe-

χ χ=

χΣ

(3)

+

(2)
iK

-

-

iK

123
cycl. perm.

Fig. 8. Graphical illustration of the three-fermion Bethe-
Salpeter equation for the Bethe-Salpeter amplitude χP̄ . K(3)

and K(2) denote the irreducible three- and two-body interac-
tion kernels, respectively. Thick arrows on quark lines indicate
full quark propagators.
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Salpeter equation is represented diagrammatically in
fig. 8.

3.2 The normalization condition

Comparing the expansion coefficients of order (P 0−ωP)0
in the Laurent series (59) gives

HP̄

[
∂

∂P 0

[(
P 0 − ωP

)
GP

]]
P 0=ωP

− i
2ωP

[
∂

∂P 0
HP

]
P 0=ωP

χP̄ χP̄ = 1I , (66)

which expresses the requirement that the product of χP̄

and χP̄ is the residue of the bound-state pole in GP . If
we multiply this equation from the left hand side with
the adjoint amplitude χP̄ , the first term in (66) vanishes
according to the adjoint Bethe-Salpeter equation (63) and
we find the normalization condition for the Bethe-Salpeter
amplitudes [11]

−i χP̄

[
∂

∂P 0
HP

]
P 0=ωP

χP̄ = 2ωP. (67)

The full explicit expression then reads

− i
∫ d4p′ξ

(2π)4
d4p′η
(2π)4

∫
d4pξ

(2π)4
d4pη

(2π)4

× χP̄ (p
′
ξ, p

′
η)
[

∂

∂P 0

(
G0

−1
P (p′ξ, p

′
η, pξ, pη)

+ iKP (p′ξ, p
′
η, pξ, pη)

) ]
P 0=ωP

χP̄ (pξ, pη) = 2ωP. (68)

A priori the normalization condition provides the cor-
rect relation between the amplitudes χP̄ and the six-
point Green’s function G. But furthermore, this additional
boundary condition is essential in selecting the proper
solutions χP̄ of the three-fermion Bethe-Salpeter equa-
tion (65) thus providing a discrete spectrum P̄ 2 = M2

of bound states.
Note that the normalization condition for the ampli-

tudes as written in the form of eq. (67) is not manifestly
covariant in contrast to the Bethe-Salpeter equation. But
it holds in any frame since both sides of eq. (67) transform
like the time component of a four-vector, if the amplitudes

SF
-1

SF
-1SF

-1SF
-1

χ-
dP
d χ =+

(3)iK+
(2)

iK
perm.

Σ
cycl.

2 Μ-iP µ
µ 2

P = P

Fig. 9. The normalization condition for the Bethe-Salpeter
amplitudes.The filled circles denote the inverse quark propa-
gators, K(2) and K(3) are the irreducible two- and three-quark
interaction kernels.

transform properly under Lorentz transformations. How-
ever, we would like to remark here that the normalization
(67) may also be rewritten in explicit covariant form as

−i χP̄

[
Pµ ∂

∂Pµ
HP

]
P=P̄

χP̄ = 2M2. (69)

For a diagrammatic illustration of eq. (69) see fig. 9.

4 Reduction to the Salpeter equation

4.1 Motivation and general remarks

In principle, the Bethe-Salpeter equation (65) for three
fermions, derived in the foregoing section, provides a suit-
able starting point for the covariant description of baryons
as bound states of three quarks in the framework of QCD.
Solving this equation with the appropriate normalization
(69) and given single-quark propagators SF and interac-
tion kernels K(2) and K(3), yields the discrete spectrum of
baryons. However, an exact solution of the Bethe-Salpeter
equation within the framework of QCD is impossible, since
the quark propagator SF and the irreducible interaction
kernels K(2) and K(3) are only formally defined in pertur-
bation theory as an infinite sum of Feynman diagrams.
Moreover it is unclear, which particular approximation
will provide quark confinement in hadrons.

But even if the exact kernels and propagators were
known in QCD, the dependence on the relative energy
(or the corresponding relative time) variables leads to a
complicated analytic pole structure, which so far could
be treated rigorously only in the case of two scalar parti-
cles interacting through a (massless) scalar exchange (the
so-called Wick-Cutkosky model, see [12,13]). Thus, the
use of general two-quark and three-quark interaction ker-
nels, that depend on the relative energy variables, leads
to serious conceptional and practical problems. To our
knowledge the only attempt to solve (approximately) a full
four-dimensional three-quark Bethe-Salpeter equation in
Euclidean space has been performed by Meyer and Böhm
[7,14,8] and subsequently by Kielanowski [15] and Falken-
steiner [16] in an approach where baryons were considered
as extremely strongly bound systems of three quite heavy
constituent quarksm� 1GeV, that interact via harmonic
oscillator interactions, so that a solution can be obtained
by an expansion in powers of 1

m . However, from a modern
point of view, the crude approximations and especially the
large constituent quark masses are questionable and not
suited for phenomenologically successful applications.

Thus, the use of the full eight-dimensional Bethe-
Salpeter equation is of rather limited practical value and
the lack of a confinement kernel that could be rigorously
derived from QCD anyhow requires an appropriate phe-
nomenological parameterization: so far, the only ansatz
that can give a realistic description of the quark confine-
ment and thus can account for the gross features of the
whole baryon spectrum up to highest orbital excitations,
is the nonrelativistic quark model, which uses static two-
and three-quark potentials.
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For these reasons we will not treat the full three-quark
Bethe-Salpeter equation. Instead we try to eliminate the
difficult relative energy dependence in order to get a six-
dimensional reduction of the full eight-dimensional Bethe-
Salpeter equation, the so-called Salpeter equation [17],
with the aim to obtain a framework that is still covari-
ant. At the same time we want to keep as close as possi-
ble to the quite successful nonrelativistic quark potential
model in order to obtain at least this model as a non-
relativistic limit. In this spirit, a covariant quark model
for mesons based on the instantaneous qq̄-Bethe-Salpeter
equation has been developed already and has been success-
fully applied to the calculation of mass spectra and various
transition matrix elements up to high momentum trans-
fers, see [18,19]. To extend this model for calculations of
baryons, we make the same simplifying assumptions and
approximations in the three-quark Bethe-Salpeter equa-
tion (sect. 4.2): The full quark propagators SF are assumed
to be given by their free forms with effective constituent
quark masses. Moreover, the kernels K(2) and K(3) are
approximated by effective interactions that are instanta-
neous in the rest frame of the bound state, which thus cor-
responds to the neglect of retardation effects. We should
mention here that the instantaneous approximation can
be formulated in a frame independent way [25], so that
formal covariance is preserved, which becomes important
for the calculation of transitions between baryon states,
where at least one of the baryon has to be boosted.

In the meson case these approximations allow for a
direct and straightforward reduction to the qq̄-Salpeter
equation [17–19] by an analytical integration over the rel-
ative energy variable, since the connected instantaneous
qq̄-kernel cuts the whole relative energy dependence of
the Bethe-Salpeter equation. The same applies also to the
three-quark Bethe-Salpeter equation, if only an instanta-
neous, connected three-quark kernel K(3) is taken into ac-
count and two-particle kernels are neglected (K(2) = 0).
In this case the Salpeter equation can be formulated in
a concise Hamiltonian form with some characteristic pro-
jector properties that reduce the number of independent
functions necessary to describe a baryon state. For the
sake of conceptual simplicity such an approach has been
used in our former investigations [26–28], where all kinds
of interactions have been parameterized in a kind of col-
lective instantaneous three-body kernel. In section 4.3 we
will first give a summary of the reduction procedure in
this simple and instructive case and discuss the specific
structure of the resulting Salpeter equation.

However, as soon as genuine two-quark kernels K(2)

are considered, new difficulties arise since the two-body
terms are unconnected within the three-quark system: de-
spite an instantaneous approximation of K(2), there re-
mains a relative energy dependence due to retardation ef-
fects of the third non-interacting spectator quark, which
is off-shell in general. In this respect the elimination of
the relative energies is technically and conceptually much
more involved and an enhanced reduction procedure is
needed. In section 4.4 we give a procedure that never-
theless allows for the reduction to a Salpeter equation.

The crucial point is the existence of a genuine instanta-
neous connected part of the interaction K(3), right from
the start. In our model this part will be given by a con-
venient form of a static three-body confinement potential
that must be present for all baryon states in all sectors
due to the confinement hypothesis. Recasting the Bethe-
Salpeter equation into a more convenient form with all
two-particle effects collected into a six-point Green’s func-
tion thus provides a similar reduction procedure as in the
case of vanishing two-body interactions. Extending a kind
of quasi-potential approach as it was first proposed by
Logunov and Tavkhelidze [29] for the equal-time Green’s
function of two scalar particles, all effects of the uncon-
nected two-body interactions can then be transformed into
an effective instantaneous potential that adds to the gen-
uine three-body kernel K(3) and we finally end up with a
reduced equation that exhibits the same expedient pro-
jector structure as in the case where the dynamics of
the quarks is given by an instantaneous three-body ker-
nel alone. The effective potential, however, consists of an
infinite perturbation series of time-ordered Feynman dia-
grams, which needs to be truncated for explicit calcula-
tions. In the subsequent sect. 5 we will analyze the struc-
ture of the resulting baryon Salpeter equation and its cor-
responding Salpeter amplitudes in detail: a remarkable
substantial property of our covariant Salpeter approach
will turn out to be that it exhibits a one-to-one correspon-
dence with the states of the nonrelativistic quark model.

4.2 Approximations

In order to transform the Bethe-Salpeter equation into a
solvable integral equation several simplifying approxima-
tions have to be made. To start, we follow the prescription
of [18] and assume free quark propagators and instanta-
neous interaction kernels.

4.2.1 Free quark propagators

First, we make the assumption that the full quark prop-
agators can be approximated by the usual free fermion
propagators with effective constituent quark masses mi

for each quark3

Si
F (pi)

!=
i

� pi −mi + iε
. (70)

This approximation is consistent with the picture of a
hadron mainly built out of constituent quarks analogous to
the non-relativistic quark model. The effective constituent
quark masses mi enter as free parameters in our model.

4.2.2 Instantaneous approximation

Moreover, we choose the irreducible two- and three-body
interaction kernels to be instantaneous in the rest frame

3 For a simplified notation we suppress the explicit flavor and
color dependencies for the moment.
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of the baryon, meaning that in the center-of-mass system
there is no dependence on the relative energy variables p0

ξ

and p0
η:

K
(3)
P (pξ, pη; p′ξ, p

′
η)
∣∣∣∣
P=(M,0)

!= V (3)(pξ,pη; p′
ξ,p

′
η),(71)

K
(2)

( 2
3 P+pηk

)
(pξk

, p′ξk
)
∣∣∣∣
P=(M,0)

!= V (2)(pξk
,p′

ξk
). (72)

This approximation corresponds to the neglect of retar-
dation effects in the rest-frame. To preserve the formal
covariance of the Bethe-Salpeter equation, however, we
need a covariant description of the instantaneous approx-
imation which holds in any arbitrary reference frame of
the bound state. We follow an idea of Wallace and Man-
delzweig [25] and introduce for arbitrary time-like total
four-momenta P , P 2 > 0, the following covariant decom-
position of any four-dimensional four-vector p,

p = p‖
P√
P 2

+ p⊥ (73)

into components parallel and perpendicular to the total
four-momentum P :

p‖ :=
〈p, P 〉√
P 2

, p⊥ := p− 〈p, P 〉
P 2

P. (74)

This is a decomposition into a time-like vector p‖ P/
√
P 2

and a space-like vector p⊥ which effectively is three-
dimensional in content. Now the instantaneous approxi-
mation, which has been formulated in eqs. (71) and (72)
within the center-of-mass frame of the three-body system,
can be formulated in any reference frame (which is speci-
fied by the four-momentum P ): we assume that the kernels
do not depend on the time-like parallel components of the
relative momenta, i.e. pξ‖, pη‖, p

′
ξ‖, p

′
η‖, but only on the

space-like perpendicular components:

K
(3)
P (pξ, pη; p′ξ, p

′
η)

!= V (3)(pξ⊥, pη⊥; p
′
ξ⊥, p

′
η⊥), (75)

K
(2)

( 2
3 P+pηk

)
(pξk

, p′ξk
) != V (2)(pξk⊥, p

′
ξk⊥). (76)

For interaction kernels of this type we have

Pµ ∂

∂Pµ
K

(3)
P (pξ, pη; p′ξ, p

′
η)
∣∣∣∣
P=P̄

=

Pµ d
dPµ

V (3)(pξ⊥, pη⊥; p
′
ξ⊥, p

′
η⊥)
∣∣∣∣
P=P̄

= 0, (77)

Pµ ∂

∂Pµ
K

(2)

( 2
3 P+pηk

)
(pξk

, p′ξk
)
∣∣∣∣
P=P̄

=

Pµ d
dPµ

V (2)(pξk⊥, p
′
ξk⊥)

∣∣∣∣
P=P̄

= 0 (78)

and, consequently, these give no direct contributions to
the normalization condition (69) for the Bethe-Salpeter

amplitudes. In the rest frame of the baryon where P =
P̄ = (M,0) we find

p‖ = p0 and p⊥ = (0,p), (79)

so that the covariant formulation of the instantaneous ap-
proximation given in (75) and (76) indeed recovers the
conditions (71) and (72) in the center-of-mass frame.

In the two-fermion case [18] it was shown that the as-
sumptions of free quark propagators and instantaneous
interaction kernels are sufficient to completely eliminate
the dependence on the relative energy dependence in or-
der to arrive at a reduced equation which can be solved
with standard techniques. In the three-fermion problem,
however, this is in general not possible, unless we consider
systems without two-body interactions. In the more gen-
eral case new difficulties arise from the property of the
two-body terms that these are unconnected within the
three-body system. Despite the instantaneous approxima-
tion of the two-particle interactions, the kernel K

(2)

P=(M,0)

defined by eq. (32) remains retarded, since (in the CMS) it
maintains the dependence on the relative energies p0

ξ and
p0

η due to retardation effects of the third noninteracting
spectator quark which is off-shell in general. Accordingly,
in K

(2)

P=(M,0) this remaining relative energy dependence is
given explicitly by the inverse single quark propagator of
the spectator together with its four-momentum conserving
δ-function:

K
(2)

P (pξ, pη; p′ξ, p
′
η)
∣∣∣∣
P=(M,0)

=

∑
cycl.perm
of(123)

V (2)(pξ3 ,p
′
ξ3
)⊗ S3

F
−1 ( 1

3P − pη3

) ∣∣∣∣
P=(M,0)

×(2π)4 δ(4)(pη3 − p′η3
). (80)

Thus, the consideration of unconnected two-particle terms
in the three-body Bethe-Salpeter equation makes a reduc-
tion technically much more involved, despite the instanta-
neous approximation of the two-body kernels. With regard
to the goal of finding a convenient reduction procedure it
is therefore instructive to consider first the conceptually
much easier case of vanishing two-particle kernels, where
the dynamics of the quarks is determined by a connected
instantaneous three-body kernel alone. In this case the re-
duction of the eight-dimensional Bethe-Salpeter equation
to an equivalent six-dimensional equation —the so-called
Salpeter equation— is straightforward (as in the two-
fermion case with a connected instantaneous two-body
kernel [18]).

4.3 The reduction without two-particle kernels

Neglecting the irreducible two-particle interaction kernels,
i.e. K(2) = 0, and taking only an instantaneous three-
body kernel (75) into account, the Bethe-Salpeter equa-
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tion and its adjoint in the center-of-mass frame4 of the
baryon with P̄ = (M,0) ≡M are given by

χM = −i G0M V (3) χM , (81)

χM = −i χM V (3) G0M . (82)

The crucial point is now that V (3) being instantaneous
truncates the p0

ξ , p
0
η dependences of the Bethe-Salpeter

equations (81) and (82). This has the following conse-
quences:

1) The p0
ξ , p

0
η integration within the operator prod-

uct V (3) χM on the right hand side of eq. (81) acts
on χM directly and thus can be used to reduce this
eight-dimensional Bethe-Salpeter amplitude to a six-
dimensional amplitude ΦM , i.e. in detail[

V (3) χM

]
(pξ, pη) =∫ d4p′ξ

(2π)4
d4p′η
(2π)4

V (3)(pξ,pη; p′
ξ,p

′
η) χM (p′ξ, p

′
η)

=
∫ d3p′ξ

(2π)3
d3p′η
(2π)3

V (3)(pξ,pη; p′
ξ,p

′
η)

×
∫ dp′ξ

0

2π
dp′η

0

2π
χM (p′ξ, p

′
η)

=
∫ d3p′ξ

(2π)3
d3p′η
(2π)3

V (3)(pξ,pη; p′
ξ,p

′
η) ΦM (p′

ξ,p
′
η)

=
[
V (3) ΦM

]
(pξ,pη). (83)

Consequently, there remains a six-dimensional integral op-
eration5 of V (3) on the reduced six-dimensional amplitude
ΦM , which is the so-called Salpeter amplitude:

ΦM (pξ,pη) :=
∫ dp0

ξ

2π
dp0

η

2π
χM

(
(p0

ξ ,pξ), (p0
η,pη)

)
. (84)

In the same way one proceeds with the operator product
χM V (3) in the adjoint Bethe-Salpeter equation (82), i.e.[

χM V (3)
]
(pξ, pη) =

[
ΦM V (3)

]
(pξ,pη), (85)

which accordingly defines the adjoint Salpeter amplitude:

ΦM (pξ,pη) :=
∫ dp0

ξ

2π
dp0

η

2π
χM

(
(p0

ξ ,pξ), (p0
η,pη)

)
. (86)

4 Due to the formally covariant formulation (75) of the in-
stantaneous approximation of the irreducible three-body kernel
(which preserves the formal covariance of the Bethe-Salpeter
equation), it is sufficient (and convenient) to go into the center-
of-mass (CMS) frame.

5 Notice that we do not introduce a new product notation
for this six-dimensional integral operation to distinguish it
from the eight-dimensional one. The difference between the two
products should be obvious from the context in which they are
used.

2) Inserting (83) and (85) into the Bethe-Salpeter
equations (81) and (82), respectively, we have

χM = −i G0M V (3) ΦM , (87)

χM = −i ΦM V (3) G0M , (88)

which gives a prescription how to reconstruct the full
Bethe-Salpeter amplitudes from the Salpeter amplitudes
for any on-shell total momentum. Consequently, in the in-
stantaneous approximation it is sufficient to know the re-
duced six-dimensional Salpeter amplitudes ΦM and ΦM to
get the full eight-dimensional Bethe-Salpeter amplitudes
χM and χM , i.e. the solutions of the Bethe-Salpeter equa-
tion (81) and (82), respectively. The next step is to get an
equation which determines ΦM and ΦM .

3) As shown in eqs. (83) and (85), the quantities

ΓM (pξ, pη) : =
[
G0

−1
M χM

]
(pξ, pη) =[

V (3) χM

]
(pξ, pη) =

[
V (3) ΦM

]
(pξ,pη) ≡ ΓM (pξ,pη),

ΓM (pξ, pη) : =
[
χM G0

−1
M

]
(pξ, pη) =[

χM V (3)
]
(pξ, pη) =

[
ΦM V (3)

]
(pξ,pη) ≡ ΓM (pξ,pη),

(89)

which are usually called amputated Bethe-Salpeter am-
plitudes or three-quark vertex functions, do not depend
on the relative energies pξ

0 and pη
0 in the center-of-mass

frame of the baryon. Consequently, the analytical depen-
dence of the Bethe-Salpeter amplitudes χM = G0M ΓM

and χM = ΓM G0M on the variables pξ
0 and pη

0 stems
exclusively from the triple-tensor product G0M of the
free quark propagators. This enables us to reduce the
eight-dimensional Bethe-Salpeter equations for the Bethe-
Salpeter amplitudes to six-dimensional integral equations
for the Salpeter amplitudes by integrating out the pξ

0,
pη

0 dependence on both sides of eqs. (87) and (88). The
Bethe-Salpeter amplitudes on the left-hand side reduce to
the corresponding Salpeter amplitudes and on the right-
hand side the relative energy integration affects merely
the free propagator G0M , i.e. in detail

ΦM (pξ,pη) =
∫ dp0

ξ

2π
dp0

η

2π
χM

(
(p0

ξ ,pξ), (p0
η,pη)

)
= −i

∫ dp0
ξ

2π
dp0

η

2π

∫ d4p′ξ
(2π)4

d4p′η
(2π)4

G0M (pξ, pη; p′ξ, p
′
η)
[
V (3) ΦM

]
(p′

ξ,pη
′)

= −i
∫ d3p′ξ

(2π)3
d3p′η
(2π)3

∫ dp0
ξ

2π
dp0

η

2π

∫ dp′0ξ
2π

dp′0η
2π

G0M (pξ, pη; p′ξ, p
′
η)
[
V (3) ΦM

]
(p′

ξ,pη
′)
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= −i
∫ d3p′ξ

(2π)3
d3p′η
(2π)3

〈G0M 〉(pξ,pη; p′
ξ,p

′
η)

×
[
V (3) ΦM

]
(p′

ξ,pη
′)

= −i
[
〈G0M 〉 V (3) ΦM

]
(pξ,pη). (90)

Thus, we end up with the so-called Salpeter equation and
its adjoint for the Salpeter amplitudes ΦM and ΦM

ΦM = −i 〈G0M 〉 V (3) ΦM , (91)

ΦM = −i ΦM V (3) 〈G0M 〉 . (92)

Here we introduced the notation

〈A〉(pξ,pη; p′
ξ,p

′
η) :=∫ dp0

ξ

2π
dp0

η

2π

∫ dp′0ξ
2π

dp′0η
2π

A(pξ, pη; p′ξ, p
′
η) (93)

for the six-dimensional reduction of any eight-dimensional
six-point function A. Accordingly, 〈G0M 〉 = 〈S1

F⊗S2
F⊗S3

F〉
denotes the reduction of the free three-quark propagator
G0M defined in eq. (26). Due to the approximative choice
of bare quark propagators with effective constituent quark
masses, the analytical structure of G0M in the relative en-
ergy variables p0

ξ and p0
η is rather simple and consequently,

the p0
ξ , p

0
η integration in 〈G0M 〉 can be performed analyt-

ically by applying Cauchy’s theorem. To this end, it is
convenient to use the following partial fraction decompo-
sition of the free one-particle propagators into positive and
negative energy contributions [30]:

Si
F(pi) =

i
� pi −mi + iε

=

i
(

Λ+
i (pi)

p0
i − ωi(pi) + iε

+
Λ−

i (pi)
p0

i + ωi(pi)− iε

)
γ0 , (94)

which isolates the pole positions in the energy variable p0
i

located at the relativistic on-shell kinetic energies

ωi(pi) :=
√
|pi|2 +m2

i (95)

of the quarks. The operators Λ±
i (pi) are the projectors

onto positive and negative energy solutions of the free
Dirac equation, written explicitly as

Λ±
i (pi) :=

ωi(pi) 1I±Hi(pi)
2ωi(pi)

, (96)

where Hi is the usual free single-particle Dirac-
Hamiltonian given by

Hi(pi) := γ0 (γ·pi +mi) = α · pi +mi β. (97)

Performing the p0
ξ , p

0
η integration we obtain the three-

fermion Salpeter propagator :

〈G0M 〉(pξ,pη; p′
ξ,p

′
η) =

i
[

Λ+
1 (p1)⊗ Λ+

2 (p2)⊗ Λ+
3 (p3)

M − ω1(p1)− ω2(p2)− ω3(p3) + iε

+
Λ−

1 (p1)⊗ Λ−
2 (p2)⊗ Λ−

3 (p3)
M + ω1(p1) + ω2(p2) + ω3(p3)− iε

]
× γ0⊗γ0⊗γ0 (2π)3 δ(3)(pξ−p′

ξ) (2π)
3 δ(3)(pη−p′

η) (98)

with pi = pi(pξ,pη) defined as in eq. (20) with P =
p1 + p2 + p3 = 0. Notice the remarkable property that
due to the pole structure of G0M in the relative en-
ergy variables p0

ξ and p0
η, the residue theorem merely

provides the projectors onto purely positive-energy and
purely negative-energy three-quark states. All mixed com-
ponents vanish!

Finally, the Salpeter equation (91) in the case of van-
ishing two-quark kernels reads explicitly

ΦM (pξ,pη) =
[

Λ+
1 (p1)⊗ Λ+

2 (p2)⊗ Λ+
3 (p3)

M − ω1(p1)−ω2(p2)−ω3(p3) + iε

+
Λ−

1 (p1)⊗ Λ−
2 (p2)⊗ Λ−

3 (p3)
M + ω1(p1)+ω2(p2)+ω3(p3)− iε

]

× γ0 ⊗ γ0 ⊗ γ0

∫ d3p′ξ
(2π)3

d3p′η
(2π)3

V (3)(pξ,pη; p′
ξ,p

′
η) ΦM (p′

ξ,p
′
η). (99)

Thus, we have seen that in the case, where the dynam-
ics of the three quarks (fermions) is described by an instan-
taneous, connected three-body kernel alone, the reduction
of the full eight-dimensional three-fermion Bethe-Salpeter
equation to the six-dimensional Salpeter equation (in the
CMS) is straightforward. The Salpeter equation is equiv-
alent to the full Bethe-Salpeter equation since eq. (87)
allows an exact reconstruction of the Bethe-Salpeter am-
plitude χM from the solution ΦM of the Salpeter equation
in the rest frame. Finally, the formally covariant frame-
work provides the possibility to obtain the amplitude χP̄

in any frame with P̄ 2 = M2 by a kinematical Lorentz
boost of the rest-frame amplitude χM .

According to eq. (99) we find the remarkable fact that
the reduction in the case of pure instantaneous three-
body kernel leads to certain projection properties for the
Salpeter amplitudes which effectively reduce the number
of independent functions necessary to describe a baryon
state. Let us continue our discussion with some investiga-
tions of this particular structure of the Salpeter equation
(99).

4.3.1 The projector structure of the Salpeter equation

Due to the energy projectors appearing in the Salpeter
propagator 〈G0M 〉, the Salpeter amplitudes are eigen-
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states of the Salpeter projectors

Λ(pξ,pη) := Λ+
1 (p1)⊗ Λ+

2 (p2)⊗ Λ+
3 (p3)

+Λ−
1 (p1)⊗ Λ−

2 (p2)⊗ Λ−
3 (p3), (100)

Λ(pξ,pη) := γ0 ⊗ γ0 ⊗ γ0 Λ(pξ,pη) γ0 ⊗ γ0 ⊗ γ0, (101)

which project onto the subspace of purely positive and
negative energy components, i.e.

ΦM = Λ ΦM = Φ+++
M + Φ−−−

M , (102)

ΦM = ΦMΛ = Φ
+++

M + Φ
−−−
M , (103)

and accordingly the Salpeter equation only involves the
amplitudes

Φ+++
M := Λ+

1 ⊗ Λ+
2 ⊗ Λ+

3 ΦM

and Φ−−−
M := Λ−

1 ⊗ Λ−
2 ⊗ Λ−

3 ΦM , (104)

whereas all mixed components such as Φ++−
M vanish. This

property reduces the Salpeter amplitudes effectively to
only 16-component functions of the six variables pξ,pη, in
contrast to the full (in Dirac space) 64-component Bethe-
Salpeter amplitudes, which are functions of eight vari-
ables. This projector structure implies that for the dy-
namics of the three quarks in the bound state (baryon)
not the full structure of the instantaneous three-body ker-
nel V (3) is relevant, but only its projected part

V
(3)
Λ (pξ,pη; p′

ξ,p
′
η) :=

Λ(pξ,pη) V (3)(pξ,pη; p′
ξ,p

′
η) Λ(p

′
ξ,p

′
η). (105)

Consequently the residual part V (3)
R := V (3)−V (3)

Λ , which
describes the coupling to the mixed energy states, plays
no role for spectroscopy (i.e. the determination of bound
state masses), although they become relevant for the re-
construction of the full Bethe-Salpeter amplitude χM ac-
cording to eq. (87) and thus can contribute when calcu-
lating various transition matrix elements [31].

In the language of time-ordered perturbation theory
this means that the instantaneity of the kernel prevents
the inclusion of single and double Z-graphs which corre-
spond to the mixed components ∼ Λ++−, Λ−−+, . . . , etc.
of the interaction kernel. However, compared to a nonrel-
ativistic ansatz, where all three quarks propagate forward
in time (corresponding here to the components ∼ Λ+++),
the Salpeter equation takes into account also those di-
agrams, where all three quarks propagate backwards in
time (triple Z-graphs corresponding to the components
∼ Λ−−− and their coupling to components ∼ Λ+++ via
Λ
−−−

V (3) Λ+++), as shown in fig. 10. We want to re-
mark here that the appearance of these negative energy
components in the Salpeter equation is connected with
the particle-antiparticle symmetry due to the CPT invari-
ance of the underlying relativistic field theoretical frame-
work. We will come back to this characteristic feature of
the Salpeter equation and discuss it in some more detail
in sect. 5.2 after we have taken also the two-particle in-
teractions into account. The importance of the negative
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Fig. 10. Time-ordered graphs of an instantaneous three-body
interaction which contribute to the three-quark propagation in
the Salpeter equation. The instantaneous three-body kernel is
represented by the dashed line.

energy contributions depends on the energy denominators
M∓(ω1+ω2+ω3− iε) of the positive and negative energy
components in (99) as can be illustrated by the following
two extreme cases:
– For small binding energies, i.e. M ≈ m1 + m2 + m3

and |pi|/mi � 1 one has

1
M + ω1 + ω2 + ω3

� 1
M − ω1 − ω2 − ω3

, (106)

such that the negative energy component in (99) be-
comes negligible compared to the positive component
and one is led to the so-called reduced Salpeter equa-
tion.

– For deeply bound states, i.e.M � m1+m2+m3, both
components are of equal order of magnitude:

1
M + ω1 + ω2 + ω3

≈ 1
M − ω1 − ω2 − ω3

. (107)

In our case of baryons as a bound three-quark system
we should definitely be rather far away from the limit of
deeply bounds states. Nevertheless, the negative energy
term of the Salpeter amplitude might contribute to a cer-
tain amount.

4.3.2 Hamiltonian formulation of the Salpeter equation

The special projector structure in connection with the par-
ticular energy denominators M∓(ω1+ω2+ω3− iε) allows
for the formulation of the Salpeter equation in Hamilto-
nian form, i.e. as an eigenvalue problem

H ΦM = M ΦM with ΛΦM = ΦM . (108)

Here we define the Salpeter Hamiltonian H by

[HΦM ] (pξ,pη) = H0(pξ,pη) ΦM (pξ,pη)

+
[
Λ+

1 (p1)⊗ Λ+
2 (p2)⊗ Λ+

3 (p3)

+Λ−
1 (p1)⊗ Λ−

2 (p2)⊗ Λ−
3 (p3)

]
× γ0 ⊗ γ0 ⊗ γ0

∫ d3p′ξ
(2π)3

d3p′η
(2π)3

V (3)(pξ,pη; p′
ξ,p

′
η) ΦM (p′

ξ,p
′
η) , (109)

where the free three-fermion Hamiltonian

H0(pξ,pη) := H1(p1)⊗ 1I⊗ 1I
+ 1I⊗H2(p2)⊗ 1I + 1I⊗ 1I⊗H3(p3) (110)
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represents the relativistic kinetic energy operator.
Of course, a similar representation of the adjoint

Salpeter equation, which determines the adjoint ampli-
tude ΦM , can also be found. Note however, that both
equations are not independent, but even are equivalent,
since there is a general6 interconnection between the
Salpeter amplitude ΦM and its adjoint ΦM , which in mo-
mentum space reads:

ΦM (pξ,pη) = −Φ†
M (pξ,pη) γ0 ⊗ γ0 ⊗ γ0. (111)

To be consistent, one has to require: If ΦM is a solution
of the Salpeter equation (108), then ΦM , as defined by
relation (111), has to be a solution of the corresponding
adjoint Salpeter equation (and vice versa). UsingH†

0 = H0

and Λ†
i = Λi, one easily shows that this equivalence of

the Salpeter equation (108) and its adjoint implies the
following condition for the interaction kernel V (3) in the
CMS:

V (3)(pξ,pη; p′
ξ,p

′
η)

!=

γ0 ⊗ γ0 ⊗ γ0
[
V (3)(p′

ξ,p
′
η; pξ,pη)

]†
γ0 ⊗ γ0 ⊗ γ0 . (112)

4.3.3 Normalization of Salpeter amplitudes—Scalar product

The normalization condition (67) of the Bethe-Salpeter
amplitudes, which reads in the center-of-mass frame with
P̄ = (M,0) ≡M

−i χM

[
∂

∂P 0

(
G0

−1
P + iV (3)

)]
P 0=M

χM = 2M, (113)

induces a normalization condition of the corresponding
Salpeter amplitudes ΦM . The instantaneous three-body
kernel V (3) has no explicit energy dependence and thus
gives no contribution to the norm. Using the representa-
tion χM = G0M ΓM and χM = ΓM G0M of the Bethe-
Salpeter amplitudes, where the vertex functions ΓM and
ΓM defined in (89) do not depend on the relative energies
p0

ξ , p
0
η, eq. (113) becomes

2M = −i ΓM G0M

[
∂

∂M
G0

−1
M

]
G0M ΓM =

ΓM

〈
−i G0M

[
∂

∂M
G0

−1
M

]
G0M

〉
ΓM . (114)

Here the angled brackets 〈. . . 〉 indicate the internal
integration over p0

ξ and p0
η which is used to reduce

the enclosed operator according to eq. (93). With
G0M (∂/∂M G0

−1
M ) G0M = −∂/∂M G0M this reduced

6 I.e. the interconnection (111) between ΦM and ΦM is inde-
pendent of the so far considered assumption of vanishing two-
body kernels and other approximations of the Bethe-Salpeter
equation.

operator may be rewritten as the derivative of the Salpeter
propagator (98) and we obtain〈

−i G0M

[
∂

∂M
G0

−1
M

]
G0M

〉
= i

∂

∂M
〈G0M 〉 =

−〈G0M 〉 γ0 ⊗ γ0 ⊗ γ0 〈G0M 〉. (115)

Substitution into eq. (114) and replacing the vertex func-
tions according to the relations 〈G0M 〉 ΓM = ΦM and
ΓM 〈G0M 〉 = ΦM = −Φ†

M γ0 ⊗ γ0 ⊗ γ0 then yields the
following normalization condition of the Salpeter ampli-
tudes ΦM :

Φ†
M ΦM =

∫
d3pξ

(2π)3
d3pη

(2π)3∑
a1,a2,a3

Φ∗
M a1a2a3

(pξ,pη)ΦM a1a2a3(pξ,pη) = 2M. (116)

Thus, the solutions ΦM of the Salpeter equation have to
be normalized according to the usual L2-norm just like the
solutions of the ordinary nonrelativistic Schrödinger equa-
tion. This norm induces a positive definite scalar product
for arbitrary amplitudes Φ1 and Φ2 that are restricted to
positive and negative energy components, i.e. Φi = ΛΦi:

〈Φ1|Φ2〉 :=
∫

d3pξ

(2π)3
d3pη

(2π)3∑
a1,a2,a3

Φ∗
1 a1a2a3

(pξ,pη) Φ2 a1a2a3(pξ,pη). (117)

Hence, the normalization condition (116) for solutions ΦM

of the Salpeter equation is then given as

〈ΦM |ΦM 〉 = 2M. (118)

We want to remark here that a similar treatment of the
fermion-antifermion (or the two-fermion) system does not
lead to a positive definite scalar product, owing to a rela-
tive sign between the positive and negative energy contri-
butions, see [18].

Note that the Salpeter Hamiltonian H is Hermitian
with respect to the scalar product (117), i.e.

〈Φ1|H Φ2〉 = 〈H Φ1|Φ2〉 , (119)

which is a direct consequence of the condition (112) on
V (3) resulting from the interconnection (111) between ΦM

and ΦM . This guarantees, as in the case of the ordi-
nary Schrödinger equation, two important consequences,
namely:

– The eigenvalues M of H, i.e. the three-fermion bound-
state masses are real, i.e. M∗ = M .

– Salpeter amplitudes ΦM1 and ΦM2 belonging to differ-
ent eigenvaluesM1 �= M2 are mutually orthogonal, i.e.
〈ΦM1 |ΦM2〉 = 0.
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4.4 The reduction with genuine two-particle kernels

Now let us come back to the general case we are in fact
interested in, where in addition to the instantaneous three-
body kernel V (3), the dynamics of the quarks is also deter-
mined by the unconnected instantaneously approximated
two body-terms given by (72) and (80). Referring again
to the formal covariance of the instantaneous approxi-
mation as before, we choose for these considerations the
three-body rest-frame with P̄ = (M,0) ≡M . The Bethe-
Salpeter equation and its adjoint then read

χM = −i G0M V (3) χM − i G0M K
(2)

M χM , (120)

χM = −i χM V (3) G0M − i χM K
(2)

M G0M , (121)

and now the difficulty stems from the circumstance that
due to the second term on the right-hand side of (120),
which contains K

(2)
M , the relative energy dependence in

the Bethe-Salpeter equation can no longer be separated
and thus, from the outset, the reduction cannot be per-
formed. Nevertheless, we still can take advantage of the
fact that the p0

ξ , p
0
η dependence at least is cut by the

first term, due to the instantaneity of V (3). Recasting the
Bethe-Salpeter equation into a more convenient form, this
feature will in fact provide a possibility to perform a re-
duction, as we will see in the following discussion. But
let us emphasize that the way of how to perform the re-
duction and consequently the final form of the Salpeter
equation is not unique, although the various resulting re-
duced equations are formally equivalent. However, in prac-
tice, even the reduced equations are not solvable in gen-
eral so that further approximations are indispensable and
thus the different reduced equations become practically
non-equivalent. Therefore, the reduced equation in its full
exact form should, right from the start, have an expedi-
ent canonical structure allowing further approximations to
be made in a systematical way. Referring to this we will
orientate our considerations according to the instructive
canonical form of the Salpeter equation as given in the
previously discussed case of vanishing two-body kernels
by eqs. (108) and (109). Before we present this specific
method for the reduction of the Bethe-Salpeter equation
(120) and its adjoint (121) in practice, let us generally
discuss in a first attempt,

– how in principle it becomes possible to reduce the
eight-dimensional three-fermion Bethe-Salpeter equa-
tion to an equivalent six-dimensional Salpeter equa-
tion, provided that the full interaction kernel KP con-
tains at least one connected instantaneous part, as
given in our case by the instantaneous three-body ker-
nel,

– what changes at all in the structure and the proper-
ties of the Salpeter equation and thus of the Salpeter
amplitudes ΦM in comparison to the case discussed
previously, where the dynamics was given by an in-
stantaneous three-body part alone.

4.4.1 A first attempt—concepts, ideas and problems

In a first attempt we now want to sketch a procedure
showing that a reduction of the Bethe-Salpeter equation
(120) can indeed be achieved, utilizing that V (3) cuts
the relative energy dependence in one term of the Bethe-
Salpeter equation. The crucial idea and concept of this
procedure is to get rid of the problematical second term
−i G0M K

(2)

M χM appearing on the right-hand side of eq.
(120), where the unconnected two-body term K

(2)

M acts
on the Bethe-Salpeter amplitude χM directly. This can be
reached by recasting the Bethe-Salpeter equation (120) in
the following manner. First we separate the terms of the
Bethe-Salpeter equation into p0

ξ , p
0
η dependent and inde-

pendent parts, as follows:[
G−1

0 M + i K
(2)

M

]
χM = −i V (3) χM . (122)

Remember that −i V (3) χM on the right-hand side indeed
has no relative energy dependence due to eq. (89). Now let
us introduce the resolvent G(2)

M of the operator [G−1
0 M +

i K
(2)

M ] appearing on the left hand side of the eqs. (122),
i.e.

G(2)

M

[
G−1

0 M + i K
(2)

M

]
=
[
G−1

0 M + i K
(2)

M

]
G(2)

M = 1I.

(123)

This Green’s function G(2)

M is the solution of the inhomo-
geneous eight-dimensional integral equation

G(2)

M = G0M − i G0M K
(2)

M G(2)

M (124)

and thus describes, apart from the free propagation G0M ,
also the propagation of the three quarks via the un-
connected two-particle interactions alone. Multiplying eq.
(122) by this resolvent G(2)

M we obtain the Bethe-Salpeter
equation in a form similar to (81), i.e. the case where we
neglected the two-particle forces, but with G0M now re-
placed by G(2)

M which additionally collects all remaining
retardation effects concerning the unconnected two-quark
interactions within the baryon:

χM = −i G(2)

M V (3) χM . (125)

This form enables us again to exploit the crucial prop-
erty of the instantaneous kernel V (3) to separate the de-
pendence on the relative energy variables pξ

0 and pη
0.

Consequently we can proceed in the same way to reduce
the Bethe-Salpeter equations (125) as we did when reduc-
ing eq. (81) in the case of vanishing two-quark kernels.
According to eq. (83) the eight-dimensional integral oper-
ation V (3) on χM on the right-hand side of eq. (125) can
be reduced to a six-dimensional operation on the Salpeter
amplitude ΦM ,[

V (3) χM

]
(pξ, pη) =

[
V (3) ΦM

]
(pξ,pη). (126)
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Fig. 11. Time-ordered graphs of the reduced Green’s function 〈G(2)
M 〉 up to the Born term (only the interactions in the quark

pair (12) are shown.) The instantaneous two-body interaction between two quarks is represented by the vertical dashed lines
and dots on the affected quark lines. The Born graphs correspond to the expressions of eq. (131).

This (in principle) provides us again the possibility to re-
construct the full eight-dimensional Bethe-Salpeter ampli-
tude χM from the Salpeter amplitude ΦM according to

χM = −i G(2)

M V (3) ΦM (127)

and shows that the analytical p0
ξ , p

0
η dependence of the

Bethe-Salpeter amplitude is completely determined by the
analytical structure of G(2)

M in these variables. Thus, per-
forming the p0

ξ , p
0
η integration on both sides of eq. (127),

the Bethe-Salpeter amplitude χM on the left reduces to
the Salpeter amplitude ΦM and on the right-hand side
only G(2)

M is affected by this integration and reduces to
〈G(2)

M 〉. Consequently, we finally end up with the reduced
equation which determines the Salpeter amplitude ΦM ,
i.e.

ΦM = −i
〈
G(2)

M

〉
V (3) ΦM . (128)

All the difficulties, arising from retardation effects due to
the unconnected two-body terms, are now transferred to
the reduction 〈G(2)

M 〉 of G
(2)

M . Corresponding to the inho-
mogeneous integral equation (124) this reduction of the
Green’s function is determined by〈
G(2)

M

〉
= 〈G0M 〉 − i

〈
G0M K

(2)

M G(2)

M

〉
= 〈G0M 〉 +

〈
G0M

[
−i K(2)

M

]
G0M

〉
+
〈
G0M

[
−i K(2)

M

]
G0M

[
−i K(2)

M

]
G0M

〉
+ . . . . (129)

Thus, we have shown that, even with unconnected
two-particle kernels, it is in principle possible to reduce
the eight-dimensional three-fermion Bethe-Salpeter equa-
tion to a six-dimensional Salpeter equation, provided we
choose at least one part of the full interaction kernel to
be instantaneous. Due to the interconnection (127) of
the full eight-dimensional Bethe-Salpeter amplitude χM

and its six-dimensional reduction, i.e. the Salpeter ampli-
tude ΦM , the Salpeter equation is equivalent to the full
Bethe-Salpeter equation since eq. (127) provides in princi-
ple an equally exact reconstruction of the Bethe-Salpeter
amplitude. Unfortunately, the analytical structure of the
Green’s function G(2)

M in the complex planes of the rel-
ative energy variables p0

ξ and p0
η is rather complicated,

so that in practice neither its reduction 〈G(2)

M 〉 required
for solving the Salpeter equation (128), nor G(2)

M itself, re-
quired for the reconstruction (127) of the Bethe-Salpeter
amplitude, is manageable in its full, exact form. The de-
termination of 〈G(2)

M 〉 for example requires in principle the
calculation of an infinite number of reduced diagrams due
to the Neumann series of G(2)

M , see eq. (129). We do not
want to bother about that complexity at the moment and
first consider 〈G(2)

M 〉 in eq. (128) only up to the Born term,

ΦM =
[
−i 〈G0M 〉 −

〈
G0MK

(2)

M G0M

〉
+ . . .

]
V (3)ΦM

(130)

in order to inspect what changes basically in the structure
of the Salpeter equation and the corresponding Salpeter
amplitudes. A tedious but straightforward calculation, us-
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−
〈
G0M K

(2)
M G0M

〉
(pξ,pη; p′

ξ,p
′
η) ={

+
Λ+

1 ⊗ Λ+
2 ⊗ Λ+

3 γ0 ⊗ γ0 ⊗ γ0

M − ω1 − ω2 − ω3 + i ε

[
V (2)(pξ,p

′
ξ)⊗ γ0

] Λ+
1

′ ⊗ Λ+
2

′ ⊗ Λ+
3

′
γ0 ⊗ γ0 ⊗ γ0

M − ω′
1 − ω′

2 − ω′
3 + i ε

(a)

− Λ−
1 ⊗ Λ−

2 ⊗ Λ−
3 γ0 ⊗ γ0 ⊗ γ0

M + ω1 + ω2 + ω3 − i ε

[
V (2)(pξ,p

′
ξ)⊗ γ0

] Λ−
1

′ ⊗ Λ−
2

′ ⊗ Λ−
3

′
γ0 ⊗ γ0 ⊗ γ0

M + ω′
1 + ω′

2 + ω′
3 − i ε

(b)

− Λ+
1 ⊗ Λ+

2 ⊗ Λ+
3 γ0 ⊗ γ0 ⊗ γ0

M − ω1 − ω2 − ω3 + i ε

[
V (2)(pξ,p

′
ξ)⊗ γ0

] Λ−
1

′ ⊗ Λ−
2

′ ⊗ Λ+
3

′
γ0 ⊗ γ0 ⊗ γ0

ω1 + ω2 + ω′
1 + ω′

2

(c)

− Λ−
1 ⊗ Λ−

2 ⊗ Λ−
3 γ0 ⊗ γ0 ⊗ γ0

M + ω1 + ω2 + ω3 − i ε

[
V (2)(pξ,p

′
ξ)⊗ γ0

] Λ+
1

′ ⊗ Λ+
2

′ ⊗ Λ−
3

′
γ0 ⊗ γ0 ⊗ γ0

ω1 + ω2 + ω′
1 + ω′

2

(d)

− Λ−
1 ⊗ Λ−

2 ⊗ Λ+
3 γ0 ⊗ γ0 ⊗ γ0

ω1 + ω2 + ω′
1 + ω′

2

[
V (2)(pξ,p

′
ξ)⊗ γ0

] Λ+
1

′ ⊗ Λ+
2

′ ⊗ Λ+
3

′
γ0 ⊗ γ0 ⊗ γ0

M − ω′
1 − ω′

2 − ω′
3 + i ε

(e)

− Λ+
1 ⊗ Λ+

2 ⊗ Λ−
3 γ0 ⊗ γ0 ⊗ γ0

ω1 + ω2 + ω′
1 + ω′

2

[
V (2)(pξ,p

′
ξ)⊗ γ0

] Λ−
1

′ ⊗ Λ−
2

′ ⊗ Λ−
3

′
γ0 ⊗ γ0 ⊗ γ0

M + ω′
1 + ω′

2 + ω′
3 − i ε

(f)}
(2π)3 δ(3)(pη − p′

η) +
cyclic. perm. of (12) 3 corresponding to the
interacting quark pairs (23) and (31)

(131)

ing the residue theorem for performing the relative energy
integration, yields the following contributions to the re-
duced Born term:

see equation (131) above

For the sake of clarity we suppressed partially the explicit
coordinate dependences by using the more compact no-
tation Λ±

i ≡ Λ±
i (pi), ωi ≡ ωi(pi) and Λ±

i

′ ≡ Λ±
i (p

′
i),

ω′
i ≡ ωi(p′

i). The time-ordered Feynman graphs corre-
sponding to the six different terms in eq. (131) are shown
in fig. 11.

The first two terms (a) and (b) have the same projec-
tor structure and corresponding energy denominators as
the Salpeter propagator 〈G0M 〉 and thus are of a similar
form as the reduction of a genuine instantaneous three-
body interaction diagram. The decisive difference to the
previously discussed case is due to the occurrence of the
mixed energy components (+ +−), (−−+), etc. in the
remaining four terms (c)–(f), which result from retarda-
tion effects of the unconnected two-particle interactions.
In other words: The propagator 〈G(2)

M 〉 which has been sub-
stituted for 〈G0M 〉 (compared to the case of neglected two-
body kernels) does not exhibit the particular projection
properties of 〈G0M 〉, i.e. the restriction to purely positive
and purely negative energy components only. This implies
(compare the discussion in subsect. 4.3.1):

– The Salpeter amplitudes ΦM are no longer eigenstates
of the Salpeter projector Λ, but also possess mixed
energy components according to the terms (e) and (f)
in (131).

– In connection with the unconnected, retarded two-
particle kernels, also the “residual” part V (3)

R = V (3)−
V

(3)
Λ of the instantaneous three-body kernel V (3), that

couples to the mixed components, now contributes to

the three-fermion bound state and therefore to the
spectroscopic results.

Note however, that (assuming weakly bound states) the
important dominant terms of this Born contribution are
given by the purely positive and negative contributions
(a) and (b) due to their particular structure of the energy
denominators:

– In the caseM > 0 the terms (c) and (e) are suppressed
with respect to the dominant term (a), since (M −
ω1 − ω2 − ω3)−1 � (ω1 + ω2 + ω′

1 + ω′
2)

−1. All other
contributions have denominators (M + ω1 + ω2 + ω3)
and thus are anyhow suppressed.

– In the case7 M < 0 the dominant term is (b), whereas
(d) and (f) are suppressed against (b), since (M +
ω1 + ω2 + ω3)−1 � (ω1 + ω2 + ω′

1 + ω′
2)

−1. All other
contributions have denominators (M − ω1 − ω2 − ω3)
and hence are anyway negligible.

The more complex structure of the Salpeter equation (128)
restricts its applicability to explicit three-body bound-
state calculations: Due to the explicit appearance of the
additional mixed energy components the formulation as
an eigenvalue problem in Hamiltonian form such as in the
case of a pure instantaneous three-body kernel is no longer
possible. Moreover further approximations of the reduced
Green’s function 〈G(2)

M 〉 are indispensable, which gives rise
to the question of how to approximate 〈G(2)

M 〉 systemati-
cally. One would expect that a perturbative approxima-
tion of 〈G(2)

M 〉 simply by cutting the Neumann series of
G(2)

M at finite order (e.g., in the so far considered Born
7 We should note here already that the Salpeter equation

generally possesses both positive and negative mass solution
due to the CPT -symmetry (see subsect. 5.2.3). In this respect
both cases M > 0 and M < 0 have to be considered.
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approximation), would not be sufficient to describe accu-
rately the effects of the two-particle interaction within a
three-body bound state, as e.g. two-particle correlations.
In order to take non-perturbatively at least an infinite
subset of diagrams of 〈G(2)

M 〉 into account, one could follow
an idea of Phillips and Wallace [32–34], who investigated
the three-dimensional reduction of the two-fermion Bethe-
Salpeter equation with general four-dimensional (i.e. non-
instantaneous) interaction kernels. Their method provides
a generalization of a former formalism of Klein [35,36] us-
ing the quasi-potential approach of Logunov and Tavkhe-
lidze [29] and has a close connection to standard time-
ordered perturbation theory. Applying their idea to our
three-body case, their method essentially consists in a
systematical prescription to determine order-by-order (in
the coupling of K

(2)

M ) an instantaneous three-particle irre-
ducible kernel K

(2)

M inst, where irreducibility is now defined
with respect to the Salpeter propagator 〈G0M 〉, such that

〈G(2)

M 〉 = 〈G0M 〉 − i 〈G0M 〉 K
(2)

M inst〈G
(2)

M 〉. (132)

This would allow for a formulation of the Salpeter equa-
tion (128) in a form that is the same as in the previously
discussed case of vanishing two-body interactions, i.e.

ΦM = −i 〈G0M 〉
[
K

(2)

M inst + V (3)
]
ΦM . (133)

However, the method of [32,33] has an inconsistency
pointed out by the authors themselves: Obviously, eqs.
(132) and (133) are in clear contradiction to the occur-
rence of mixed energy components discussed above: due
to the projector property of 〈G0M 〉, eq. (132) would re-
strict 〈G(2)

M 〉 and consequently ΦM to purely positive and
negative components only. In the next subsection we will
therefore improve our reduction procedure such that this
method nevertheless becomes applicable without revealing
such inconsistencies.

4.4.2 Reduction to a Salpeter equation in Hamiltonian form

In this subsection we present a systematical reduction pro-
cedure, which avoids the difficulties and inconsistencies of
the foregoing first attempt and allows for a formulation of
the Salpeter equation with a structure quite similar to that
of sect. 4.3, where the dynamics was given by a connected
instantaneous three-body interaction alone. Furthermore,
this procedure will provide a systematic approximation
of the exact reduced equation that is still manageable in
practice and appropriate for explicit calculations. Our aim
is to get a reduction of the Bethe-Salpeter equation which
even in the presence of unconnected two-quark kernels ex-
hibits the same form and properties as the Salpeter equa-
tion (91) in the case of vanishing two-body terms. Conse-
quently it then can likewise be formulated as an eigenvalue
problem (or at least as a generalized eigenvalue problem)
in Hamiltonian form as discussed in subsect. 4.3.2. In other
words:

– The free three-quark propagation shall be given by the
Salpeter propagator 〈G0M 〉. Accordingly, we search for
an instantaneous three-particle irreducible kernel V eff

M
(a quasi-potential) with irreducibility defined with re-
spect to the propagator 〈G0M 〉, which covers all the
complexity arising from the unconnected two-particle
interactions and adds to the genuine instantaneous
three-quark kernel V (3).

– Due to the projector property of the Salpeter propa-
gator

Λ〈G0M 〉 = 〈G0M 〉Λ = 〈G0M 〉 , (134)

where Λ and Λ are the Salpeter projectors defined in
eq. (100) and (101), the reduced equation then merely
involves the purely positive and purely negative en-
ergy components. Consequently the reduced ampli-
tudes emerging from the Salpeter equation and its ad-
joint must be eigenstates of the Salpeter projector Λ
and Λ, respectively.

– However, as demonstrated in the previous discussion
of subsect. 4.4.1, the Salpeter amplitude itself is no
longer an eigenstate of the Salpeter projector when
two-particle interactions are taken into account. We
found that in this case also the mixed energy com-
ponents occur. Consequently, the reduced amplitude
resulting from our desired reduced equation cannot be
the full Salpeter amplitude ΦM but only its projected
part ΦΛ

M := ΛΦM . To summarize, we are looking for a
reduction of the Bethe-Salpeter equation of the form

ΦΛ
M = −i 〈G0M 〉

[
V (3) + V eff

M

]
ΦΛ

M

with ΦΛ
M := ΛΦM . (135)

Equivalence to the Salpeter equation (128) then re-
quires that all interactions via the mixed components
must be effectively taken into account in the quasi-
potential V eff

M and moreover there must be an intercon-
nection which allows to regain the full Salpeter ampli-
tude ΦM and finally the full Bethe-Salpeter amplitude
χM from the projected amplitude ΦΛ

M .

Now let us become specific and show how such a kind of
reduction can indeed be achieved. To this end we split the
instantaneous three-body kernel V (3) according to

V (3) = V
(3)
Λ + V

(3)
R , (136)

with V
(3)
Λ that part of V (3) which couples exclusively to

purely positive and purely negative energy states, i.e.

V
(3)
Λ (pξ,pη; p′

ξ,p
′
η) :=

Λ(pξ,pη) V (3)(pξ,pη; p′
ξ,p

′
η) Λ( p′

ξ,p
′
η) (137)

and the residual part V (3)
R := V (3) − V

(3)
Λ , which couples

also to the mixed energy components and has the property

Λ V
(3)
R Λ ≡ 0. (138)
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Then we have for the Bethe-Salpeter equation and its ad-
joint:

χM = −i G0M

[
V

(3)
Λ + V

(3)
R +K

(2)

M

]
χM , (139)

χM = −i χM

[
V

(3)
Λ + V

(3)
R +K

(2)

M

]
G0M . (140)

Recall that in the case of vanishing two-particle kernels
only the first part V (3)

Λ contributes to the Salpeter equa-
tion, while the residual part V (3)

R disappears according to
property (138), as discussed in subsect. 4.3.1. But now,
in connection with retardation effects of the unconnected
two-particle terms, also the residual part V (3)

R gives con-
tributions to the reduction of the Bethe-Salpeter equation
as has been shown in the previous subsect. 4.4.1. Keeping
this in mind, we now want to proceed in a way similar
to our first attempt in subsect. 4.4.1, where we transfered
the effects of the retarded two-particle terms K

(2)

M into
the Green’s function G(2)

M . However, our discussion indi-
cates that it is even more convenient to absorb together
withK

(2)

M also the instantaneous kernel V (3)
R into a Green’s

function GM , since the contributions of V (3)
R occur exclu-

sively in connection with K
(2)

M . In this way we achieve that
really all complications resulting from the unconnected
two-body terms are gathered in the resolvent GM , which
now is defined by

GM

[
G−1

0 M + i V (3)
R + i K

(2)

M

]
=[

G−1
0 M + i V (3)

R + i K
(2)

M

]
GM = 1I (141)

and thus is the solution of the inhomogeneous integral
equations

GM = G0M − i G0M

[
V

(3)
R +K

(2)

M

]
GM =

G0M − i GM

[
V

(3)
R +K

(2)

M

]
G0M . (142)

With GM the Bethe-Salpeter equation and its adjoint can
be rewritten as before in the equivalent form

χM = −i GM V
(3)
Λ χM , (143)

χM = −i χM V
(3)
Λ GM , (144)

which is suited for the six-dimensional reduction, because
the new three-body kernel V (3)

Λ is instantaneous. The re-
duction is performed as before. Similar to eq. (83) we ob-
tain first[

V
(3)
Λ χM

]
(pξ, pη) =

[
V

(3)
Λ ΦM

]
(pξ,pη), (145)[

χM V
(3)
Λ

]
(pξ, pη) =

[
ΦM V

(3)
Λ

]
(pξ,pη), (146)

where the Salpeter amplitudes ΦM and ΦM are the re-
ductions of the corresponding Bethe-Salpeter amplitudes

as defined in eqs. (84) and (86). Inserting this back into
the Bethe-Salpeter equations, we get the prescription how
to reconstruct the full eight-dimensional Bethe-Salpeter
amplitudes from the Salpeter amplitudes:

χM = −i GM V
(3)
Λ ΦM , (147)

χM = −i ΦM V
(3)
Λ GM . (148)

However, with the definition V
(3)
Λ = ΛV (3)Λ, we in fact

have

χM = −i GM ΛV (3) ΦΛ
M , (149)

χM = −i ΦΛ

M V (3)Λ GM , (150)

showing that for a reconstruction of the full eight-
dimensional Bethe-Salpeter amplitudes it indeed suffices
to know only the projected components

ΦΛ
M (pξ,pη) := Λ (pξ,pη) ΦM (pξ,pη) , (151)

Φ
Λ

M (pξ,pη) := ΦM (pξ,pη) Λ (pξ,pη) (152)

of the Salpeter amplitudes. Performing now the integra-
tion over pξ

0 and pη
0 on both sides of eqs. (149) and (150),

the Bethe-Salpeter amplitudes χM and χM on the left-
hand side reduce to the Salpeter amplitudes ΦM and ΦM

and on the right-hand side, we obtain the reduction 〈GM 〉
of the resolvent GM leading to the interconnection between
the full Salpeter amplitudes ΦM and ΦM and their corre-
sponding projected parts ΦΛ

M and Φ
Λ

M , respectively, i.e.

ΦM = −i 〈GM 〉 ΛV (3) ΦΛ
M , (153)

ΦM = −i ΦΛ

M V (3)Λ 〈GM 〉. (154)

Here the mixed energy components of the full amplitudes
ΦM and ΦM reenter via the mixed energy components of
〈GM 〉. To get the equations for the components ΦΛ

M and
Φ

Λ

M , we finally have to perform the projection on purely
positive and purely negative energy components via the
Salpeter projectors Λ and Λ on both sides of eqs. (153)
and (154), respectively. We then find

ΦΛ
M = −i 〈GM 〉Λ V (3) ΦΛ

M , (155)

Φ
Λ

M = −i ΦΛ

M V (3) 〈GM 〉Λ, (156)

where we introduced the symbol 〈GM 〉Λ to denote the cor-
responding projection on 〈GM 〉,

〈GM 〉Λ := Λ〈GM 〉Λ, (157)

which cuts off the mixed energy components on both sides
of 〈GM 〉. Thus, due to the Neumann series of GM , the
reduced propagator 〈GM 〉Λ may be represented as power
series which starts in lowest order with the free Salpeter
propagator 〈G0M 〉 and consists of an infinite number of
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reduced Feynman diagrams, which all are restricted to
purely positive and negative energy components, as the
Salpeter propagator 〈G0M 〉 itself:

〈GM 〉Λ = 〈G0M 〉+ Λ
〈
G0M (−i)

[
V

(3)
R +K

(2)

M

]
G0M

〉
Λ

+Λ
〈
G0M (−i)

[
V

(3)
R +K

(2)

M

]
×G0M (−i)

[
V

(3)
R +K

(2)

M

]
G0M

〉
Λ + . . . . (158)

The idea is now to classify the reducible and irreducible
diagrams in this infinite reduced series in the same way
as done in sect. 2, where the quantum field-theoretical
six-point Green’s function G was non-perturbatively
constructed as a solution of an inhomogeneous eight-
dimensional integral equation. But now this classification
is done on the reduced level where irreducibility is un-
derstood with respect to the “free” Salpeter propagator
〈G0M 〉. This means that we are looking for an irreducible
kernel V eff

M such that 〈GM 〉Λ is the solution of the following
six-dimensional integral equation:

〈GM 〉Λ != 〈G0M 〉 − i 〈G0M 〉 V eff
M 〈GM 〉Λ =

〈G0M 〉 − i 〈GM 〉Λ V eff
M 〈G0M 〉. (159)

Note that in contrast to our first attempt, where this
ansatz due to the restrictive action of the Salpeter propa-
gator 〈G0M 〉 on purely positive and negative energy com-
ponents led to inconsistencies, here the ansatz becomes
possible now, because 〈GM 〉Λ itself and thus all terms of
the series (158) have by construction the same restriction
as 〈G0M 〉 to these components only. Formally the deter-
mination of V eff

M corresponds to the inversion of 〈GM 〉Λ,
which due to the projector properties is restricted to the
subspace of positive and negative energy components. In
particular, this requires the inversion of the Salpeter prop-
agator 〈G0M 〉 in this subspace. For this purpose we intro-
duce the operator h0M by

h0M (pξ,pη; p′
ξ,p

′
η) :=

−i γ0 ⊗ γ0 ⊗ γ0 [M 1I−H0(pξ,pη)]

× (2π)3 δ(3)(pξ − p′
ξ) (2π)3 δ(3)(pη − p′

η), (160)

with H0 the free three-fermion Hamiltonian defined in eq.
(110) such that the “inverse” of 〈G0M 〉 in this subspace is
given by8

〈G0M 〉 h0M = Λ, h0M 〈G0M 〉 = Λ, (161)

and the “inversion” of 〈GM 〉Λ can now be expressed by

〈GM 〉Λ
[
h0M + i V eff

M

]
= Λ,[

h0M + i V eff
M

]
〈GM 〉Λ = Λ. (162)

8 Note that according to our concise operator notation Λ
and Λ here have the meaning of an integral operator i.e.:
Λ(pξ,pη;p

′
ξ,p

′
η):=Λ(pξ,pη)(2π)

3δ(3)(pξ−p′
ξ)(2π)

3δ(3)(pη−p′
η).

A unique definition of the effective, irreducible kernel V eff
M

then requires its restriction to positive and negative com-
ponents according to

ΛV eff
M = V eff

M Λ = V eff
M . (163)

Finally, having found this quasi potential V eff
M , we can

use eqs. (162) in order to transform the Salpeter equa-
tion (155) and its adjoint (156) into the desired form as
indicated in the beginning of this subsection in eq. (135):

ΦΛ
M = −i 〈G0M 〉

[
V (3) + V eff

M

]
ΦΛ

M , (164)

Φ
Λ

M = −i ΦΛ

M

[
V (3) + V eff

M

]
〈G0M 〉. (165)

The form and therefore the properties of this reduced
bound-state equation are indeed exactly the same as in
the case of vanishing two-particle kernels discussed in sect.
4.3. The only extension is the effective quasi potential V eff

M
which occurs in addition to the genuine instantaneous
three-body kernel V (3) and absorbs all the complexities
entering via the retardation effects from the unconnected
two-quark interactions. Note, however, that V eff

M , in con-
trast to V (3), in general is energy-, i.e. M -dependent as
indicated by the subscript M .

To obtain a Hamiltonian formulation of the Salpeter
equation, we multiply eq. (164) by [ i γ0 ⊗ γ0 ⊗ γ0 h0M ]
and thus end up with a the generalized9 eigenvalue prob-
lem which determines the bound state mass M and the
corresponding amplitude ΦΛ

M :

HM ΦΛ
M = M ΦΛ

M , (166)

where the Salpeter Hamiltonian HM now explicitly reads[
HM ΦΛ

M

]
(pξ,pη) := H0(pξ,pη) ΦΛ

M (pξ,pη)

+Λ(pξ,pη) γ0 ⊗ γ0 ⊗ γ0

∫ d3p′
ξ

(2π)3
d3p′

η

(2π)3

V (3)(pξ,pη; p′
ξ,p

′
η) Φ

Λ
M (p′

ξ,p
′
η)

+Λ(pξ,pη) γ0 ⊗ γ0 ⊗ γ0

∫ d3p′
ξ

(2π)3
d3p′

η

(2π)3

V eff
M (pξ,pη; p′

ξ,p
′
η) Φ

Λ
M (p′

ξ,p
′
η). (167)

The next step is to determine V eff
M . According to eq.

(157) we have

〈GM 〉Λ != Λ〈GM 〉Λ, (168)

where on the left 〈GM 〉Λ is given by the integral equa-
tion (159) which defines V eff

M and on the right we in-
sert GM as given by the integral equation (142) with ker-
nel V (3)

R +K
(2)

M . This equation then has to be solved for
9 “generalized” means that now the Salpeter Hamiltonian

HM itself depends on the eigenvalue M due to the M -
dependence of V eff

M .
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V eff
M . As shown in detail in appendix A, with the restric-

tion (163) the effective instantaneous kernel V eff
M can be

uniquely determined order-by-order as an infinite power
series expansion

V eff
M =

∞∑
k=1

V eff
M

(k)
(169)

of irreducible interaction terms V eff
M

(k) in powers k of the

kernel V (3)
R + K

(2)

M . The explicit expressions in arbitrary
order k are then constructed according to the following
prescription:

V eff
M

(1)
= h0M Λ

〈
G0M K

(2)

M G0M

〉
Λ h0M , (170)

for k > 1 see equation (171) next page

Notice the emerging structure of these equations: The re-
duced Feynman diagram of kth order (i.e. the first term
on the right-hand side of eq. (171)) consists on the one
hand of the irreducible part V eff

M

(k) of order k, which we
are in fact interested in, and on the other hand, it contains
an order-k reducible part, built from all possible iterations
of reducible diagrams V eff

M

(ki) of lower order ki < k with∑
i ki = k, as given by the second term in (171), which

obviously has to be subtracted to get the desired V eff
M

(k).

4.4.3 The normalization condition for the reduced
amplitudes

The solutions χP̄ of the Bethe-Salpeter equation (120)
have to satisfy the normalization condition, which may be
formulated in the explicitly covariant form (69). The co-
variant framework ensures that the normalization in the
rest-frame implies the correct normalization of the Bethe-
Salpeter amplitudes χP̄ in any frame. In this section we
will determine the corresponding normalization condition
for the projected Salpeter amplitudes ΦΛ

M , i.e. the solu-
tions of the Salpeter equation (164) in the rest-frame. For
this purpose we start with the Bethe-Salpeter norm which
in the center-of-mass frame reads

−i χM

[
∂

∂M
HM

]
χM = 2M, (172)

where the pseudo-Hamiltonian HM is defined by

HM = G0
−1
M + i K

(2)

M + i V (3). (173)

To get the analogous condition for the reduced amplitudes,
we have to express the eight-dimensional Bethe-Salpeter
amplitude χM and its adjoint χM by the corresponding
reduced six-dimensional amplitudes ΦΛ

M and Φ
Λ

M , respec-
tively. We do this by using the relations (149) and (150),

i.e. the prescription how to reconstruct the Bethe-Salpeter
amplitudes from the Salpeter amplitudes:

χM = −i GM ΛV (3) ΦΛ
M , (174)

χM = −i ΦΛ

M V (3)Λ GM . (175)

Recall that in eq. (141) the Green’s function GM was de-
fined as the resolvent of the pseudo-Hamiltonian

HR
M := G0

−1
M + i K

(2)

M + i V (3)
R ,

i.e. HR
M GM = GM HR

M = 1I. (176)

Accordingly, with the decomposition V (3) = V
(3)
Λ + V

(3)
R ,

we write

HM = HR
M + i V (3)

Λ , (177)

where the projected part V (3)
Λ of the instantaneous kernel

V (3) has no explicit M -dependence as V (3) itself. There-
fore, it gives no contribution to the normalization condi-
tion (172) which thus becomes

i Φ
Λ

M V (3)Λ GM

[
∂

∂M
HR

M

]
GM Λ V (3) ΦΛ

M = 2M.

(178)

Using the resolvent equation (176) for the Green’s function
GM the derivative of HR

M can be rewritten as a derivative
of GM :

GM

[
∂

∂M
HR

M

]
GM = − ∂

∂M
GM . (179)

Substitution into (178) then yields

−i Φ
Λ

M V (3)Λ

[
∂

∂M
GM

]
Λ V (3) ΦΛ

M = 2M, (180)

which is convenient for the further reduction, since the
“vertex” amplitudes Φ

Λ

M V (3)Λ and Λ V (3) ΦΛ
M are six-

dimensional and the only remaining full eight-dimensional
quantity is the derivative of the Green’s function GM

which can be reduced by the internal integrations over
pξ

0 and pη
0 according to eq. (93):

−i Φ
Λ

M V (3) Λ

〈
∂

∂M
GM

〉
Λ V (3) ΦΛ

M = 2M. (181)

The next step is to get rid of the three-body kernel V (3)

by absorbing it into the Salpeter amplitudes ΦΛ
M and Φ

Λ

M

by means of the Salpeter equations (155) and (156). We
start with

Λ

〈
∂

∂M
GM

〉
Λ =

∂

∂M

[
Λ 〈GM 〉Λ

]
=

∂

∂M
〈GM 〉Λ ,

(182)

where we used that the partial derivative ∂/∂M can be
commuted with the integrations over pξ

0 and pη
0 and also
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V eff
M

(k)
= i h0M Λ

〈
G0M (−i)

[
V

(3)
R + K

(2)
M

]
G0M . . . (−i)

[
V

(3)
R + K

(2)
M

]
G0M︸ ︷︷ ︸

k times

〉
Λ h0M

− i
k∑

r=2

∑
k1, k2, . . . , kr < k

k1 + k2 + . . . + kr = k

[
−i V eff

M

(k1)
]
〈G0M 〉

[
−i V eff

M

(k2)
]
〈G0M 〉 . . .

[
−i V eff

M

(kr)
]
. (171)

with the Salpeter projector Λ. With the resolvent equa-
tion (162) for the reduced propagator 〈GM 〉Λ, we can then
rewrite the derivative of 〈GM 〉Λ as

∂

∂M
〈GM 〉Λ = − 〈GM 〉Λ

∂

∂M

[
h0M + i V eff

M

]
〈GM 〉Λ ,

(183)

which finally enables us to apply the Salpeter equation
(155) and its adjoint (156) in order to absorb the three-
body kernel V (3) into the Salpeter amplitudes:

i Φ
Λ

M V (3) 〈GM 〉Λ
× ∂

∂M

[
h0M + i V eff

M

]
〈GM 〉Λ V (3) ΦΛ

M = 2M

⇔ −i Φ
Λ

M

∂

∂M

[
h0M + i V eff

M

]
ΦΛ

M = 2M. (184)

The explicit expression for the derivative of the operator
h0M , owing to its definition (160), is given by[

∂

∂M
h0M

]
(pξ,pη; p′

ξ,p
′
η) =

−i γ0 ⊗ γ0 ⊗ γ0 (2π)3 δ(3)(pξ−p′
ξ) (2π)

3 δ(3)(pη−p′
η),

(185)

and one readily shows that the general relation (111) be-
tween the rest-frame Salpeter amplitude ΦM and its cor-
responding adjoint ΦM holds likewise for the projected
amplitudes ΦΛ

M = ΛΦM and Φ
Λ

M = ΦMΛ, i.e.

Φ
Λ

M (pξ,pη) = −ΦΛ
M

†
(pξ,pη) γ0 ⊗ γ0 ⊗ γ0, (186)

so that we finally end up with the following form of the
normalization condition for the reduced amplitudes ΦΛ

M

〈ΦΛ
M |ΦΛ

M 〉 − 〈ΦΛ
M | γ0 ⊗ γ0 ⊗ γ0

( ∂

∂M
V eff

M

)
ΦΛ

M 〉 = 2M.

(187)

Here 〈·|·〉 denotes the positive-definite scalar product
(117), which is induced by the L2-normalization condi-
tion of the Salpeter amplitude in the case of vanishing
two-particle kernels. In comparison to the case where the
dynamics is determined by an instantaneous three-body
kernel alone we thus find that (owing to its explicit en-
ergy dependence) the effective kernel V eff

M in general leads
to an additional contribution to the norm.

4.4.4 Lowest-order contributions to the effective kernel

In eqs. (169)–(171) we displayed the general order-by-
order prescription to construct V eff

M . In practice, we have
to approximate the effective kernel V eff

M , which itself con-
sists of an infinite number of terms. A systematical ap-
proximation is now given by truncating the series (169) at
some finite order k <∞, i.e.

V eff
M � V eff

M

(1)
+ V eff

M

(2)
+ . . .+ V eff

M

(k)
, (188)

thus yielding an approximation of the Salpeter amplitude
ΦΛ

M � ΦΛ
M

(k) by the solution of

ΦΛ
M

(k)
= −i〈G0M 〉

(
V (3) +

k∑
i=1

V eff
M

(i)

)
ΦΛ

M

(k)
. (189)

Note that such a finite-order approximation of V eff
M means

for the original reduced propagator 〈GM 〉Λ (and thus also
for the Salpeter equation) an approximation beyond per-
turbation theory, due to the infinite iteration of V eff

M in
〈GM 〉Λ. It is worthwhile to mention that this subsequent
approximation of the Salpeter equation (within the CMS
frame) still preserves formal covariance. Our reduction
procedure and thus the construction of V eff

M can be covari-
antly formulated in any arbitrary reference frame accord-
ing to the covariant replacements p0 → p‖ and p → p⊥
as mentioned previously. Consequently, also the trunca-
tion (188) of the effective kernel V eff

M can in fact be per-
formed frame-independently. Another aspect concerning
the approximation (188) requires attention. For the cal-
culation of transition matrix elements we need the full
Bethe-Salpeter amplitude χM which (if V eff

M and ΦΛ
M are

known exactly) can be reconstructed by the prescription
(149) via the Green’s function GM . To be consistent, we
need an approximation G(k)

M that corresponds to the ap-
proximation (188) of the effective kernel. In other words,
we require the corresponding order k approximation χ

(k)
M

of the Bethe-Salpeter amplitude χM such that its reduc-
tion yields the order k approximation ΦΛ

M
(k) of the Salpeter

amplitude. As shown in ref. [31] a consistent prescription
for an approximated reconstruction of the Bethe-Salpeter
amplitude can indeed be found.

With regard to explicit calculations let us now become
specific and compute the explicit expressions for the con-
tributions to V eff

M up to second order.
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Fig. 12. Time-ordered graphs for the Born term

〈G0M 〉V eff
M

(1) 〈G0M 〉 due to eq. (190). The instantaneous
two-body kernel (shown for the quark pair (12) only) is
represented by the vertical dashed line.

The Born term V eff
M

(1)

Concerning the Born term V eff
M

(1) we can refer to a former
result of subsect. 4.4.1 given in eq. (131). According to eq.
(170) the projectors Λ and Λ select the purely positive and
negative energy components, i.e. the terms (a) and (b) of
eq. (131), and cut off the mixed contributions, which cor-
respond to the terms (c) to (f). We then find the following,
rather simple result, which is a sum of three unconnected
two-fermion potentials for each quark pair (see also fig. 12
for the diagrammatic representation):

V eff
M

(1)
(pξ,pη; p′

ξ,p
′
η) =[

h0M Λ
〈
G0M K

(2)

M G0M

〉
Λ h0M

]
(pξ,pη; p′

ξ,p
′
η)

= γ0 ⊗ γ0 ⊗ γ0

×
{
Λ+

1 ⊗ Λ+
2 ⊗ Λ+

3

[
γ0 ⊗ γ0 V (2)(pξ,p′

ξ)
]

⊗ 1I (2π)3 δ(3)(pη−p′
η) Λ

+
1

′⊗ Λ+
2

′⊗ Λ+
3

′

− Λ−
1 ⊗ Λ−

2 ⊗ Λ−
3

[
γ0 ⊗ γ0 V (2)(pξ,p′

ξ)
]

⊗ 1I (2π)3 δ(3)(pη−p′
η) Λ

−
1

′⊗ Λ−
2

′⊗ Λ−
3

′
}

+ cyclic. perm. of (12) 3 corresponding to the
interacting quark pairs (23) and (31) , (190)

where Λ±
i ≡ Λ±

i (pi) and Λ±
i

′ ≡ Λ±
i (p

′
i). Note that this

Born term V eff
M

(1) in fact is M -independent.

The second-order term V eff
M

(2)

Already in second order the expressions become much
more complex: Using the recipe given by eqs. (169)–(171)

we obtain for the second-order term V eff
M

(2):

V eff
M

(2)
=

−i
{
h0M Λ

〈
G0M K

(2)

M G0M

〉
(1I− Λ) V (3)Λ

+ Λ V (3)(1I− Λ)
〈
G0M K

(2)

M G0M

〉
Λ h0M

+ h0M

[
Λ
〈
G0M K

(2)

M G0M K
(2)

M G0M

〉
Λ

− Λ
〈
G0M K

(2)

M G0M

〉
Λ h0M

× Λ
〈
G0M K

(2)

M G0M

〉
Λ

]
h0M

}
. (191)

Analyzing eq. (191) in more detail, V eff
M

(2) essentially con-
sists of three structurally different contributions,

V eff
M

(2)
= W

(2)
M + U

(2)
M + C

(2)
M . (192)

The term W
(2)
M is given by the first term on the right-

hand side of eq. (191):

W
(2)
M := − i h0MΛ

〈
G0M K

(2)

M G0M

〉
(1I− Λ) V (3) Λ

− iΛV (3) (1I− Λ)
〈
G0M K

(2)

M G0M

〉
Λ h0M . (193)

It is of first order in the instantaneous two-particle ker-
nel (as the Born term V eff

M

(1)) and again we can go back
to subsect. 4.4.1 and use the result (131) to compute the
explicit expression of W (2)

M . However, in contrast to the
Born term, now the terms (c) to (f) of the expression
(131) that couple also to the mixed energy components,
enter only. They are attached in a symmetrical way from
the right- and left-hand side to the residual part V (3)

R of
V (3), such that the mixed energy components appear in-
ternally in W

(2)
M . Notice that the terms of W (2)

M are sup-
pressed with respect to the corresponding reducible terms
V

(3)
Λ 〈G0M 〉V eff

M

(1)+V eff
M

(1)〈G0M 〉V (3)
Λ , built by iteration of

V
(3)
Λ and the first-order Born term V eff

M

(1) by means of the
Salpeter equation. This is apparent from the different non-
singular internal energy denominators in W

(2)
M in compar-

ison to the singular expression 〈G0M 〉 that emerge in the
reducible terms (see eq. (131) and the subsequent discus-
sion of the corresponding terms (a), (b)↔ (c), (d), (e), (f)
in subsect. 4.4.1). A diagrammatic representation of the
corresponding time-ordered Feynman graphs is shown in
fig. 13.

Furthermore, the second irreducible part on the right-
hand side of eq. (191), which is of second order in the
two-body kernel, may be split into two terms of different
structure. According to the decomposition K

(2)

M = K12
M +
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Fig. 13. Time-ordered graphs of the contribution W
(2)
M to the second-order term V eff

M
(2)

given in eq. (193). The instantaneous
three-body kernel is represented by the vertical dashed line that connects three quark lines (indicated by the dots). The
instantaneous two-particle kernel is shown for the pair (12) only.

K23
M +K31

M , with

K12
M (pξ, pη; p′ξ, p

′
η) =

V (2)(pξ,p′
ξ)⊗ S3

F
−1( 1

3M−pη

)
(2π)4 δ(4)(pη−p′η3

) (194)

and K23
M , K31

M the corresponding cyclic permutations of
K12

M , firstly we find an unconnected part U (2)
M that consists

of a sum of irreducible two-body loops in each quark pair,
i.e.

U
(2)
M := −i h0M

[
Λ
〈
G0M K12

M G0M K12
M G0M

〉
Λ

−Λ
〈
G0M K12

M G0M

〉
Λh0M Λ

〈
G0M K12

M G0M

〉
Λ

]
h0M

+ corresponding terms with interacting
quark pairs (23) and (31). (195)

Remember that the second term in eq. (195) just subtracts
the reducible part of Λ

〈
G0M K12

M G0M K12
M G0M

〉
Λ that

is built up by a two-fold iteration of the corresponding
Born graphs (190), so that we are left with an irreducible
double Z-loop graph of the corresponding time-ordered
Feynman diagram as shown in fig. 14. Secondly, we find a
connected part C(2)

M that contains the sum of all possible
irreducible quark-exchange diagrams. This term is given

by

C
(2)
M := −i h0M

[
Λ
〈
G0M K12

M G0M K23
M G0M

〉
Λ

−Λ
〈
G0M K12

M G0M

〉
Λh0M Λ

〈
G0M K23

M G0M

〉
Λ

]
h0M

+
corresponding terms with other quark pairings
in the incoming and outgoing channels:
(23, 12), (12, 31), (31, 12), (31, 23) and (23, 31).

(196)

In fig. 15 the different time-ordered graphs contributing
to the irreducible second-order quark-exchange interaction
are shown diagrammatically.

The explicit calculation of the second-order terms
Λ〈G0M K

(2)

M G0M K
(2)

M G0M 〉Λ, needed for the determi-
nation of U (2)

M and C
(2)
M , is lengthy but straightforward

and can be performed by making again elaborate use

1

2

3

1

2

3
+

+

+

+

+

+

-

-

-

-

-

-1

2

3

′

′

′

1

2

3

′

′

′

Fig. 14. Time-ordered graphs of the unconnected irreducible

two-particle kernel U
(2)
M as defined in eq. (195). Here only the

term (12)3 is shown.
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Fig. 15. Time-ordered graphs of the connected irreducible quark-exchange interaction C
(2)
M as defined in eq. (196). As an

example only term (12, 23) is shown.

of the residue theorem. Owing to the increasing number
of quark-lines and the increasing number of contributing
poles in the relative energy variables p0

ξ and p0
η, the struc-

ture and coordinate dependence of these explicit expres-
sions is rather complicated in comparison to the rather
simple structure of the Born term (190). Moreover U

(2)
M

and C
(2)
M exhibit an explicit M -dependence. We restrict

our explicit calculations to the leading Born term (Born
approximation).

5 Bound-states in Born approximation of the
quasi-potential

The discussion of the lowest-order contributions to the
effective quasi-potential V eff

M in the last section clearly
showed that with increasing order of the contributions to
V eff

M the explicit expressions rapidly become more com-
plicated. While the dominant leading-order Born term
V eff

M

(1) is still rather simple in structure, already the
second-order contribution V eff

M

(2) contains a lot of differ-
ent irreducible terms whose structure is quite complex and
thus impedes an efficient numerical treatment. Therefore,
expecting these contributions to be small in comparison
to the leading Born term, we consider the Born approxi-
mation

V eff
M � V eff

M

(1)
(197)

only. For the sake of completeness let us summarize the
corresponding expressions for the Salpeter equation and
the normalization condition in this approximation. These
equations shall constitute the basis of our quark model for
baryons.

5.1 Salpeter equation and normalization condition

Approximating the series (169) by the leading Born term
(190), the approximated Salpeter equation (166) can still
be formulated as an ordinary eigenvalue problem,

HΦΛ
M = M ΦΛ

M , (198)

since, due to eq. (190), the Born term V eff
M

(1) in fact is M -
independent. The M -independent Salpeter Hamiltonian
H then reads explicitly:[
HΦΛ

M

]
(pξ,pη) = H0(pξ,pη) ΦΛ

M (pξ,pη)

+
[
Λ+

1 (p1)⊗ Λ+
2 (p2)⊗ Λ+

3 (p3)

+Λ−
1 (p1)⊗ Λ−

2 (p2)⊗ Λ−
3 (p3)

]
× γ0 ⊗ γ0 ⊗ γ0

∫ d3p′ξ
(2π)3

d3p′η
(2π)3

V (3)(pξ,pη; p′
ξ,p

′
η) Φ

Λ
M (p′

ξ,p
′
η)

+
[
Λ+

1 (p1)⊗ Λ+
2 (p2)⊗ Λ+

3 (p3)

−Λ−
1 (p1)⊗ Λ−

2 (p2)⊗ Λ−
3 (p3)

]
× γ0 ⊗ γ0 ⊗ 1I

∫ d3p′ξ
(2π)3

V (2)(pξ,p′
ξ)⊗ 1I ΦΛ

M (p′
ξ,pη)

+ corresponding terms with interacting
quark pairs (23) and (31). (199)

Note the striking structural difference between the con-
nected three-body part and the unconnected two-body
part: The two-body term shows a relative sign between
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the positive and negative energy projectors and occur-
rence of the identity (instead of γ0) in the Dirac space
of the spectator quark.

To be consistent, the same approximation of V eff
M must

also be used in the normalization condition (187). In
Born approximation, the second term in the normaliza-
tion condition (187) vanishes, owing to the explicit M -
independence of the Born term V eff

M

(1) and we arrive at

∂

∂M
V eff

M

(1)
= 0 ⇒ 〈ΦΛ

M |ΦΛ
M 〉 = 2M. (200)

Consequently, the solutions ΦΛ
M of the Salpeter equa-

tion (199) in Born approximation of V eff
M have to fulfill

the same L2-normalization condition (116) as in the case
where the dynamics was determined by the instantaneous
three-body kernel alone (see subsect. 4.3.3), i.e.

〈ΦΛ
M |ΦΛ

M 〉 =
∫

d3pξ

(2π)3
d3pη

(2π)3∑
a1,a2,a3

ΦΛ
M

∗
a1a2a3

(pξ,pη)ΦΛ
M a1a2a3

(pξ,pη) = 2M. (201)

The Salpeter equation for ΦΛ
M and the corresponding ad-

joint equation for Φ
Λ

M must be consistent with the relation
(186) between ΦΛ

M and Φ
Λ

M . This leads to the following
condition for the instantaneous interaction kernels V (3)

and V (2):

γ0 ⊗ γ0 ⊗ γ0
[
V (3)(p′

ξ,p
′
η; pξ,pη)

]†
γ0 ⊗ γ0 ⊗ γ0 !=

V (3)(pξ,pη; p′
ξ,p

′
η) ,

γ0 ⊗ γ0
[
V (2)(p′

ξ,pξ)
]†

γ0 ⊗ γ0 != V (2)(pξ,p′
ξ), (202)

which implies that the Salpeter Hamiltonian (199) in Born
approximation of the effective kernel is Hermitian with
respect to the scalar product 〈·|·〉, i.e.

〈Φ1|H Φ2〉 = 〈H Φ1|Φ2〉, ∀ Φ1, Φ2 with ΛΦ1,2 = Φ1,2.
(203)

As in the case of vanishing two-quark kernels this again
guarantees that

– the eigenvalues (bound-state masses) M of H are real,
i.e. M∗ = M ;

– the Salpeter amplitudes ΦΛ
M1

and ΦΛ
M2

corresponding
to different eigenvaluesM1 �= M2 are mutually orthog-
onal: 〈ΦΛ

M1
|ΦΛ

M2
〉 = 0.

5.2 Symmetries of the Salpeter equation

So far we discussed the constraints (202) of the instanta-
neous two- and three-quark interaction kernels V (3) and
V (2) that followed from the interconnection of the am-
plitude ΦΛ

M and its adjoint Φ
Λ

M and guarantee the Her-
miticity of the Salpeter Hamiltonian H with respect to

the positive definite scalar product 〈·|·〉. We are led to
further conditions on the kernels if we regard the sym-
metries which the strong interaction of the quarks has to
respect. Since the underlying theory, quantum chromody-
namics (QCD), is invariant under parity transformations
(P), time-reversal (T ) and charge conjugation (C), these
symmetry properties must be incorporated in the Salpeter
equation. This means specifically: If ΦΛ

M is a solution of
the Salpeter equation, the same must also hold for D ΦΛ

M
with D ∈ {P, T , C} the representation of the correspond-
ing transformation on the (projected) Salpeter amplitudes
ΦΛ

M = ΛΦM . Below we shall investigate the corresponding
constraints on the interaction kernels V (3) and V (2) that
follow from these invariance conditions. Instead of P, T
and C we alternatively consider P, T and CPT .

5.2.1 Parity invariance

The representation of the parity transformation
P(x0,x) := (x0,−x) on the full momentum space
Salpeter amplitudes ΦM is given by

[PΦM ] (pξ,pη) = γ0 ⊗ γ0 ⊗ γ0 ΦM (−pξ,−pη). (204)

Owing to the intertwining relation Λ±
i (pi)γ0 =

γ0Λ±
i (−pi) the different energy components of ΦM rep-

resent invariant subspaces under the parity transforma-
tion P, such that P decomposes into irreducible repre-
sentations on these different subspaces. In particular, the
Salpeter projector Λ commutes10 with P, i.e [P, Λ] = 0
such that[
PΦΛ

M

]
(pξ,pη) = γ0 ⊗ γ0 ⊗ γ0 ΦΛ

M (−pξ,−pη) ,

with Λ PΦΛ
M = PΦΛ

M , (205)

is the representation of P on the projected Salpeter ampli-
tudes ΦΛ

M = ΛΦM , which actually appear in the Salpeter
equation (198). Parity invariance implies that with ΦΛ

M
also PΦΛ

M is a solution of the Salpeter equation, i.e. the
Salpeter Hamiltonian has to commute with the represen-
tation P of the parity transformation, i.e. [P, H] = 0.
With [P, Λ] = 0 and the invariance of the free Hamilto-
nian H0 under P, i.e [P, H0] = 0, one readily deduces the
following conditions for the three- and two-quark interac-
tion kernels:

γ0 ⊗ γ0 ⊗ γ0 V (3)(−pξ,−pη; −p′
ξ,−p′

η) γ
0 ⊗ γ0 ⊗ γ0 !=

V (3)(pξ,pη; p′
ξ,p

′
η),

γ0 ⊗ γ0 V (2)(−pξ,−p′
ξ) γ

0 ⊗ γ0 != V (2)(pξ,p′
ξ). (206)

As usual, [P, H] = 0 also implies that the solutions ΦΛ
M

of the Salpeter equation simultaneously are eigenstates of
P, i.e.

PΦΛ
M, π = π ΦΛ

M, π, (207)

with definite parity π = ±1.
10 The brackets [·, ·] denote the commutator [A, B] := AB −
BA.
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5.2.2 Time-reversal invariance

The representation of the time-reversal transformation
T (x0,x) := (−x0,x) on the full momentum space Salpeter
amplitudes reads

[T ΦM ] (pξ,pη) = −γ1γ3 ⊗ γ1γ3 ⊗ γ1γ3 Φ∗
M (−pξ,−pη).

(208)

Again the different energy components of ΦM define in-
variant subspaces under the time-reversal transformation
according to the intertwining relation Λ±

i (pi) γ1γ3 =
γ1γ3 Λ±

i

∗
(−pi). In particular, we find that the Salpeter

projector is time-reversal invariant, i.e. [T , Λ] = 0, such
that we have a representation of the time-reversal trans-
formation on the subspace of purely positive and negative
components, i.e. for the projected amplitudes ΦΛ

M = ΛΦM

holds:[
T ΦΛ

M

]
(pξ,pη) = −γ1γ3 ⊗ γ1γ3 ⊗ γ1γ3 ΦΛ

M

∗
(−pξ,−pη)

with Λ T ΦΛ
M = T ΦΛ

M . (209)

To respect time-reversal invariance of the strong interac-
tion, we must impose that [T , H] = 0. Using the invari-
ance property [T , Λ] = 0 of Λ and the time-reversal in-
variance of the free Hamiltonian H0, i.e. [T , H0] = 0 we
end up with the conditions

−γ1γ3⊗γ1γ3⊗γ1γ3 V (3)∗(−pξ,−pη;−p′
ξ,−p′

η)

× γ1γ3⊗γ1γ3⊗γ1γ3 != V (3)(pξ,pη;p′
ξ,p

′
η),

γ1γ3⊗γ1γ3 V (2)∗(−pξ,−p′
ξ) γ

1γ3⊗γ1γ3 !=V (2)(pξ,p′
ξ).

(210)

5.2.3 CPT -symmetry — Interpretation of negative
bound-state masses

The Salpeter HamiltonianH being Hermitian with respect
to the positive definite scalar product (117) guarantees
that the eigenvalues M , i.e. the bound-state masses, are
real, as one imposes for physically acceptable solutions.
However, H is not positive definite, since even the free
Hamiltonian H0 is not positive. Accordingly, H in gen-
eral possesses both positive and negative eigenvalues and
the spectrum might be even unbound from below. These
negative eigenvalues, at first glance seem physically un-
acceptable and the corresponding amplitudes also contra-
dict the normalization (201) via the positive definite L2-
norm. Nevertheless, these negative energy solutions with
M < 0 can be interpreted physically meaningful. In fact,
since our covariant Salpeter approach is based on rela-
tivistic quantum field theory, it should reveal a particle-
antiparticle symmetry as a characteristic feature due to
CPT -invariance. Accordingly, we demand that the instan-
taneous two- and three-quark interaction kernels commute
with the Dirac-space operator

⊗3
i=1 γ

0γ5, i.e.[
γ0γ5 ⊗ γ0γ5 ⊗ γ0γ5, V (3)(pξ,pη; p′

ξ,p
′
η)
]
= 0, (211)[

γ0γ5 ⊗ γ0γ5, V (2)(pξ,p′
ξ)
]
= 0, (212)

in order to ensure that the three-quark Salpeter equation
in fact respects the CPT -symmetry of the strong inter-
action. In this manner the negative bound-state masses
get a well-defined physical interpretation as we will see in
the following discussion. The conditions (211) and (212)
on V (3) and V (2) imply that the Salpeter Hamiltonian H
given in eq. (199) anticommutes with

⊗3
i=1 γ

0γ5, i.e.{
γ0γ5 ⊗ γ0γ5 ⊗ γ0γ5, H

}
= 0 (213)

as can easily be shown with the anticommutator11 and
intertwining relations{

γ0γ5, γ0
}
= 0,

{
γ0γ5, Hi(pi)

}
= 0

and γ0γ5 Λ±
i (pi) = Λ∓

i (pi) γ0γ5. (214)

Moreover, it follows from (214) that γ0 ⊗ γ0 ⊗ γ0 and
hence also the representation P of the parity transforma-
tion (204) anticommutes with

⊗3
i=1 γ

0γ5:{
γ0γ5 ⊗ γ0γ5 ⊗ γ0γ5, P

}
= 0. (215)

Now let ΦΛ
−M, π be a solution of the Salpeter equation with

negative mass −M < 0 and parity π which obeys

H ΦΛ
−M, π = −M ΦΛ

−M, π, P ΦΛ
−M, π = π ΦΛ

−M, π.

(216)

We consider the transformation ΦΛ
−M, π %→ Φ̃Λ

−M, π of the
amplitude ΦΛ

−M, π, given by

Φ̃Λ
−M, π(pξ,pη) := γ0γ5 ⊗ γ0γ5 ⊗ γ0γ5 ΦΛ

−M, π(pξ,pη).
(217)

Then, due to eq. (213), also this CPT -transformed am-
plitude Φ̃Λ

−M, π is a solution of the Salpeter equation, but
now with the positive bound-state mass +M > 0. At the
same time eq. (215) implies that Φ̃Λ

−M, π has parity −π
opposite to ΦΛ

−M, π. Thus, we have

H Φ̃Λ
−M, π = +M Φ̃Λ

−M, π , P Φ̃Λ
−M, π = −π Φ̃Λ

−M, π

(218)

Consequently, the eigenvalues come in pairs with oppo-
site sign, but with eigenfunctions (Salpeter amplitudes)
having opposite parity. This symmetry indeed allows the
interpretation of the negative energy solutions for a given
set of quantum numbers as antibaryon states, which after
the transformation ΦΛ

−M, π %→ Φ̃Λ
−M, π yield positive en-

ergy solutions of opposite parity but otherwise with the
same quantum numbers:

Φ̃Λ
−M, π =

3⊗
i=1

γ0γ5 ΦΛ
−M, π ≡ ΦΛ

M, −π. (219)

11 The brackets {·, ·} denote the anticommutator {A, B} :=
AB + BA.
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CPT

M

0

M> 0

M< 0

π = + π = −

Fig. 16. Interpretation of the negative energy solutions due
to the CPT -symmetry of the Salpeter equation represented by
eq. (219). See text for explanation.

This is a new interesting feature of our Salpeter equation-
based baryon model in contrast to nonrelativistic (or
relativized) quark potential models, which are usually
based on the ordinary Schrödinger equation: Solving the
Salpeter equation for fixed spin J yields at the same time
both the positive- and the negative-parity bound-state
spectrum of the baryons, see fig. 16 for a diagrammati-
cal illustration of this feature. Furthermore the positive-
and negative-parity states are coupled in this way and are
not independent as in the ordinary nonrelativistic poten-
tial models.

Notice that, owing to the intertwining relation
γ0γ5 Λ±

i (pi) = Λ∓
i (pi) γ0γ5, the roles of the positive

and negative energy components are interchanged by the
CPT -transformation:

Φ+++
M, −π =

3⊗
i=1

γ0γ5 Φ−−−
−M, π

and Φ−−−
M, −π =

3⊗
i=1

γ0γ5 Φ+++
−M, π. (220)

Consequently, only both subspaces of purely positive
and negative energy components together (but not sep-
arately) define an invariant subspace under the CPT -
transformation. Thus really both subspaces are necessary
to get an (irreducible) representation of CPT . In par-
ticular the so-called reduced Salpeter equation, in which
the negative components are a priori neglected (Tamm-
Dancoff approximation), violates in general the CPT -
symmetry.

5.3 Eigenstates of the Salpeter projector

Let us come back to the specific projector structure of
the Salpeter equation and discuss in some more detail the

corresponding induced structure of the solutions, i.e. of
the (projected) Salpeter amplitudes ΦΛ

M = ΛΦM , which
obviously are eigenstates of the Salpeter projector. These
projection properties of the solutions reduce the number
of independent functions necessary to describe the baryon
state. Due to the form of the Salpeter projector Λ the so-
lutions split into the two orthogonal purely positive and
purely negative energy components and thus the (in Dirac
space) 64-component function in fact reduces to an effec-
tively 16-component function only. To perform this reduc-
tion of the Salpeter amplitude to a 16-component func-
tion we have to determine the general form of the eigen-
states of the Salpeter projector Λ. To this end, we will
consider first the positive and negative energy solutions
of the free Dirac equation for a spin-1/2 particle. These
four-component Dirac spinors, which are the eigenstates
of the energy projectors Λ±, can be constructed in the
usual way by the embedding map of two-component Pauli
spinors. This scheme can then be generalized to the (pro-
jected) three-fermion Salpeter amplitudes ΦΛ

M which are
eigenstates of the Salpeter projector Λ and accordingly
are formed by a three-fermion embedding map.

For the following considerations it is convenient to
adjust our notation to the symmetry properties of the
Salpeter amplitude under permutations of the quarks, es-
pecially in the case of different quark masses. So far we
used a simplified notation suppressing the flavor depen-
dencies of the single-quark operators Hi and Λ±

i and we
assigned to each quark i an individual quark mass mi.
With the replacements of Hi and Λ±

i given by

H(pi) :=
∑

f

Hmf
(pi)⊗ PF

f , (221)

with Hmf
(p) := γ0 (γ · p+mf ) ,

Λ±(pi) :=
∑

f

Λ±
mf

(pi)⊗ PF
f , (222)

with Λ±
mf

(p) :=
ωmf

(p)±Hmf
(p)

2ωmf
(p)

and ωmf
(p) :=

√
|p|2 +m2

f ,

the correct assignment of quark masses according to their
flavor f = u, d, s is realized by the flavor projectors PF

f :=
|f〉〈f | such that the free Hamiltonian H0 and the Salpeter
projector

Λ(pξ,pη) = Λ+++(pξ,pη) + Λ−−−(pξ,pη), (223)

Λ±±±(pξ,pη) := Λ±(p1)⊗ Λ±(p2)⊗ Λ±(p3) (224)

become permutationally invariant operators.

5.3.1 Dirac spinors as embedded Pauli spinors

Let us first consider the Dirac spinors ψ±
m : R±

m → C4

for a single spin- 12 particle with mass m, i.e. the positive
and negative energy solutions of the free Dirac equation
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on the positive/negative mass shell R±
m := {p ∈ IR4 :

〈p, p〉 = m2, p = (±ωm(p),p)}. These are eigenstates of
the positive and negative energy projectors Λ±

m:

Λ+
m(p) ψ+

m(p) = ψ+
m(p)

with p = (+ωm(p),p) ∈ R+
m (225)

Λ−
m(p) ψ−

m(p̃) = ψ−
m(p̃)

with p̃ = (−ωm(p),p) ∈ R−
m. (226)

As usual, the positive and negative energy solutions ψ±
m :

R±
m → C4 of the Dirac equation may be written in the

Weyl representation as

ψ+
m(p) = T+

m(p) ϕ+
m(p)

with T+
m(p) :=

1√
2 ωm(p)

(√
σ(Pp)√
σ(p)

)
, (227)

ψ−
m(p̃) = T−

m(p) ϕ−
m(p̃)

with T−
m(p) :=

1√
2 ωm(p)

(
−
√
σ(p)√

σ(Pp)

)
, (228)

where ϕ±
m : R±

m → C2 are two-component Pauli spinors,
P is the parity transformation, i.e. P p = (ωm(p),−p) for
p = (p0,p) = (ωm(p),p), and

σ(p) := σµ pµ ⇒
√
σ(p) =

σ(p) +m√
2(ωm(p) +m)

, (229)

with σi the Pauli matrices and σ0 = σ0 = 1IC2 . We
wrote these relations already in a form that defines the
so-called embedding operations T±

m(p) : C2 %→ C4. They
map arbitrary two-component Pauli spinors ϕ±

m into four-
component orthogonal eigenstates ψ±

m of the energy pro-
jectors Λ±

m. This is also apparent from the properties
Λ±

m(p) T±
m(p) = T±

m(p) and Λ∓
m(p) T±

m(p) = 0 of these
embedding maps. On the other hand, the mappings ψ±

m ↔
ϕ±

m are also unique, since they satisfy

[
T±

m(p)
]†

T±
m(p) = 1IC2 and thus ϕ±

m = T±
m

†
ψ±

m

(230)

and, in particular, they are isometric operations:
ψ±

m
†
ψ±

m = ϕ±
m

†
ϕ±

m. Finally, we define single-quark embed-
ding operations

T±(p) :=
∑

f

T±
mf

(p)⊗ PF
f , (231)

which account for the correct mass assignment for each
flavor f and accordingly map to eigenstates of the energy
projectors Λ±(p) defined in eq. (222):

Λ±(p) T±(p) = T±(p) and Λ∓(p) T±(p) = 0 .
(232)

5.3.2 Embedding map for Salpeter amplitudes ΦΛ
M

Now we use this result for the construction of the solutions

ΦΛ
M (pξ,pη) = Φ+++

M (pξ,pη) + Φ−−−
M (pξ,pη) (233)

of the Salpeter equation, whose components

Φ±±±
M (pξ,pη) = Λ±±±(pξ,pη) ΦM (pξ,pη) (234)

are eigenstates of the positive and negative energy projec-
tors Λ±±±. According to the above discussion we now de-
fine the three-quark embedding maps by the tensor prod-
ucts of single quark embedding operators (231)

T±±±(pξ,pη) := T±(p1)⊗ T±(p2)⊗ T±(p3). (235)

Then the positive and negative energy contributions Φ±±±
M

to ΦΛ
M can be uniquely written as

Φ±±±
M (pξ,pη) = T±±±(pξ,pη) ϕ±

M (pξ,pη) (236)

in terms of the embedded three-particle amplitudes ϕ±
M

which involve triple tensor products of Pauli spinors only.
Finally, we have for the Salpeter amplitude ΦΛ

M the unique
orthogonal decomposition

ΦΛ
M (pξ,pη) = T+++(pξ,pη) ϕ+

M (pξ,pη)

+ T−−−(pξ,pη) ϕ−
M (pξ,pη) (237)

and thus the determination of the (in Dirac space orig-
inally 4 ⊗ 4 ⊗ 4 =) 64-component solution ΦΛ

M of the
Salpeter equation reduces via the embedding map to find-
ing the two (only 2 ⊗ 2 ⊗ 2 =) 8-component amplitudes
ϕ±

M . Due to the isometry of the embedding maps T±±±
which follows from eq. (230), the normalization condition
for the Salpeter amplitudes ΦΛ

M can be expressed in terms
of these Pauli-spinors ϕ±

M according to

〈ΦΛ
M |ΦΛ

M 〉 = 〈ϕ+
M |ϕ+

M 〉+ 〈ϕ−
M |ϕ−

M 〉 = 2M, (238)

where 〈ϕ±
M |ϕ±

M 〉 denotes the usual nonrelativistic (posi-
tive definite) L2 norm. The next step is to investigate the
structure of these three-quark Pauli amplitudes for a given
set of quantum numbers specifying a baryon, in order to
find a proper basis.

5.4 General decomposition of the Salpeter amplitudes

The three-quark Salpeter amplitude ΦΛ
M of a baryon is

characterized by a set of quantum numbers that are con-
served under the strong interaction. We consider in this
work light baryons, which are built up by quarks with fla-
vors up (u), down (d) and strange (s). The flavor-SU(3)
symmetry is explicitly broken to SU(2) ⊗ U(1) by the
different constituent quark masses mu = md < ms. With
mu = md ≡ mn only the SU(2) isospin symmetry shall be
assumed to be exact. Due to parity invariance, rotational
invariance and this (broken) flavor invariance a baryon
is then characterized by the parity π, the total spin J
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with 3-component MJ , isospin T with 3-component MT

and strangeness S∗. Moreover, according to Pauli’s princi-
ple, the (projected) Salpeter amplitude, together with its
positive and negative energy components, must be totally
antisymmetric under permutations σ ∈ S3.

Consider the three-quark Salpeter amplitude ΦΛ
M ≡

ΦΛ
M JπMJTMT S∗ describing a baryon with the quantum

numbers listed above. In order to determine the struc-
ture of its embedded Pauli spinors, we have to investi-
gate, how the corresponding transformation properties of
the Salpeter amplitude ΦΛ

M transfer to the Pauli spinors
ϕ±

M via the embedding maps T+++ and T−−−:
– The representation P of the parity transformation is
given for the Salpeter amplitudes ΦΛ

M by[
PΦΛ

M

]
(pξ,pη) = γ0 ⊗ γ0 ⊗ γ0 ΦΛ

M (−pξ,−pη). (239)

With our special choice (227) and (228) for the em-
bedding operations T±

m , we find the following simple
intertwining relations

P T±±± = T±±± [±P ′] . (240)

On the right-hand side, ±P ′ is the corresponding in-
duced representation for the Pauli amplitudes ϕ±

M ,
where the symbol P ′ is used to denote the usual non-
relativistic representation of the parity transformation,
i.e. [

P ′ ϕ±
M

]
(pξ,pη) := ϕ±

M (−pξ,−pη). (241)

Hence T+++ preserves parity, whereas T−−− reverses
parity, and, consequently, for a Salpeter amplitude
with parity π, i.e. PΦΛ

M = π ΦΛ
M , the positive en-

ergy Pauli amplitude has the same parity π, whereas
the negative energy amplitude has the opposite parity
−π:

P ′ϕ±
M = ±π ϕ±

M . (242)

– The Salpeter amplitudes ΦΛ
M transform under rota-

tions Rω ∈ SO(3), with rotation vector ω ∈ IR3, as[
DRω

ΦΛ
M

]
(pξ,pη) =

Su ⊗ Su ⊗ Su ΦΛ
M (R−1

ω pξ, R
−1
ω pη). (243)

In the Weyl representation we have

Su =
(
u 0
0 u

)
, where u = exp (−i σ · ω) ∈ SU(2),

(244)

with u σ(p) u† = σ(Rω p) and we find the intertwining
relations

DRω
T±±± = T±±± D′

Rω
. (245)

Here the induced representation D′
Rω

of Rω, which acts
on the Pauli amplitudes ϕ±

M , is exactly the usual non-
relativistic representation of the rotation Rω for a sys-
tem of three spin- 12 fermions:[
D′

Rω
ϕ±

M

]
(pξ,pη) = u⊗ u⊗ u ϕ±

M (R−1
ω pξ, R

−1
ω pη).
(246)

Thus, to get the irreducible subspaces {J, MJ =
−J, . . . , J} of DRω

, i.e. the Salpeter amplitudes ΦΛ
M

with definite total spin J and 3-component MJ , the
Pauli amplitudes ϕ±

M have simply to be the usual
eigenstates of the total angular momentum operator
Ĵ = L̂+ Ŝ as in a nonrelativistic system of three spin-
1
2 fermions.

– As mentioned already, the three-quark embedding op-
erators T±±± explicitly break the flavor-SU(3) sym-
metry by the different quark massesmn < ms and only
a SU(2) ⊗ U(1) invariance remains. The operators of
isospin and strangeness hence commute with the em-
bedding maps T±±±, and accordingly the Pauli ampli-
tudes ϕ±

M are their eigenstates with quantum numbers
T , MT and S∗.

– The three-quark embedding operations T±±± appar-
ently are completely symmetric under arbitrary per-
mutations σ ∈ S3 of quarks by their construction
(235), i.e.

Dσ T±±± = T±±± D′
σ, (247)

where Dσ and D′
σ are the representations of the per-

mutation σ ∈ S3 on the Salpeter and Pauli amplitudes,
respectively. This is a crucial point that permits to re-
duce the symmetry considerations of the Salpeter am-
plitudes to the embedded Pauli spinors. As the baryon
Salpeter amplitude ΦΛ

M must be totally antisymmetric,
i.e.

Dσ ΦΛ
M = sign(σ) ΦΛ

M , ∀σ ∈ S3, (248)

the Pauli spinors themselves must have this symmetry:

D′
σ ϕ±

M = sign(σ) ϕ±
M , ∀σ ∈ S3. (249)

In summary, the relativistic baryon Salpeter amplitude
ΦΛ

M JπMJTMT S∗ with specific quantum numbers J , π, T ,
MT and S∗ can be formed by embedding ordinary to-
tally antisymmetric nonrelativistic baryon wave functions
ϕM JπMJTMT S∗ :

ΦΛ
M JπMJTMT S∗(pξ,pη) =

T+++(pξ,pη) ϕ+
M JπMJTMT S∗(pξ,pη)

+ T−−−(pξ,pη) ϕ−
M J−πMJTMT S∗(pξ,pη) (250)

To define a basis for the totally antisymmetric three-
quark Salpeter amplitude we can thus proceed in the same
manner as in the nonrelativistic quark model, where the
baryon wave functions ϕM J±πMJTMT S∗ have the generic
form

ϕM JπMJTMT S∗(pξ,pη) =∑
RL,RS ,RF

{{[
[ψπ

L(pξ,pη)]RL
⊗ [χS ]RS

]J
MJ

⊗
[
φT S∗

MT

]
RF

}
S
⊗ CA

}
A
, (251)

with
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– [ψπ
L(pξ,pη)]RL

the momentum space wave function
with total orbital angular momentum L, parity π and
permutational symmetry RL ∈ {S,MS ,MA,A};

– [χS ]RS
the spin function of three Pauli spinors coupled

to total spin S with permutational symmetry RS ∈
{S,MS ,MA};

–
[
φT S∗

MT

]
RF

the flavor function with total isospin T , T3-
component MT and strangeness S∗ which is of permu-
tational symmetry RF ∈ {S,MS ,MA,A};

– CA the totally antisymmetric color-singlet
state given by the Levi-Civita tensor: CA =
1√
6
εc1c2c3 |c1〉 ⊗ |c2〉 ⊗ |c3〉.

The momentum space wave function ψπ
L and the spin func-

tion χS are coupled as usually to states of total angular
momentum J, MJ according to[

[ψπ
L(pξ,pη)]RL

⊗ [χS ]RS

]J
MJ

=∑
ML,MS

〈LML, SMS |JMJ 〉 ψπ
LML

(pξ,pη) χSMS
(252)

with Clebsch-Gordan coefficients 〈LML, SMS |JMJ〉; the
sum over the symmetries RL, RS and RF in (251) is such
that the combined momentum-, spin-, flavor wave function
is totally symmetric, RL⊗RS⊗RF = S, and, finally, the
baryon amplitude becomes totally antisymmetric with the
totally antisymmetric color-singlet state CA.

Finally, let us discuss the implications of the present
covariant approach with respect to the baryonic spectrum
and the nonrelativistic quark model. According to the pre-
ceding discussion, the structure of the Salpeter amplitudes
seems to be very similar to that usually considered in the
nonrelativistic quark model: The Pauli amplitude embed-
ded by the positive energy embedding map T+++ is of
exactly the same structure as the usual nonrelativistic
wave function for a given set of quantum numbers. But
note the additional negative energy contribution to the
Salpeter amplitude: For a specific parity π of the baryon
the embedding operator T−−− brings also the nonrela-
tivistic wave functions with the opposite (“wrong”) par-
ity −π into play (due to the different behavior of T+++

and T−−− under parity transformations). Thus, at a first
glance, our approach seems to posses a larger number of
states than the nonrelativistic approach. But recall that
the negative mass (−M < 0) solutions of the Salpeter
equation can be interpreted as the antibaryon states to
baryons of just the opposite parity −π, due to the CPT -
symmetry of the Salpeter equation. Exactly these negative
mass states, which after CPT transformation become the
baryon states (M > 0) with opposite parity, correspond
to the additional states with the “wrong” parity −π. This
feature becomes even more apparent, if we analyze the
effect of the CPT -transformation on the embedded Pauli
wave functions. For the embedding maps we find the re-
lations

γ0γ5 ⊗ γ0γ5 ⊗ γ0γ5 T±±±(pξ,pη) = ∓ T∓∓∓(pξ,pη),
(253)

such that the CPT transformation essentially switches
the embedding maps of positive and negative energy and
hence also the parity. Considering the decompositions of
the negative mass solution ΦΛ

−M JπMJTMT S∗

ΦΛ
−M JπMJTMT S∗ = T+++ ϕ+

−M JπMJTMT S∗

+ T−−− ϕ−
−M J−πMJTMT S∗ (254)

and of its related, CPT -transformed, positive mass solu-
tion of opposite parity ΦΛ

M J−πMJTMT S∗

ΦΛ
M J−πMJTMT S∗ =

T+++ ϕ+
M J−πMJTMT S∗ + T−−− ϕ−

M JπMJTMT S∗

= γ0γ5 ⊗ γ0γ5 ⊗ γ0γ5 ΦΛ
−M JπMJTMT S∗ , (255)

the CPT -transformation together with the property (253)
of the embedding maps then yields the following relations
for the corresponding Pauli amplitudes:

ϕ+
M J−πMJTMT S∗ = − ϕ−

−M J−πMJTMT S∗ ,

ϕ−
M JπMJTMT S∗ = + ϕ+

−M JπMJTMT S∗ , (256)

which means that the CPT -transformation just inter-
changes the roles of both Pauli amplitudes. Thus we find in
our present covariant approach exactly the same number
of states as in the nonrelativistic quark model, a feature
that in general cannot be taken for granted in a relativis-
tic approach: Consider, e.g., the naive flavor-SU(3) quark
model. To explain the lowest-lying multiplet it is assumed
that the ground-state orbital wave function is a totally
symmetric S-wave, the color state is completely antisym-
metric and hence the spin-flavor state has to be totally
symmetric, which in the nonrelativistic approximation re-
stricts the possible multiplets to a flavor octet with spin 1

2

and a flavor decuplet with spin 3
2 . In a relativistic quark

model, however, the number of spin-degrees of freedom is
doubled for each quark, due to the presence of the lower
components, which means that in the relativistic flavor-
SU(3) model the number of possible symmetric spin-flavor
multiplets is much higher than in the nonrelativistic ap-
proach, see e.g., [8,14,37,38], in contrast to the experimen-
tal findings, which can be explained qualitatively by the
naive nonrelativistic model very well. Our approach does
not reveal this problem, owing to the Salpeter projector Λ
and the CPT -symmetry of the Salpeter equation, which
circumvents such a proliferation of the number of states.
Note that this feature of our model is a direct consequence
of the instantaneous approximation or, more precisely, of
the instantaneous ansatz for the genuine three-body (con-
finement) kernel. In view of the success of nonrelativistic
quark models to account for the correct number of baryon
excitations we in fact consider this to be one of the main
empirical arguments to use this instantaneous ansatz.
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6 Summary and conclusion

In this paper we presented how a relativistically covariant
constituent quark model for baryons can be constructed
within the general framework of quantum field theory. We
started with the basic field-theoretical quantities describ-
ing bound states of three fermions —the Bethe-Salpeter
amplitudes and their adjoints— which form the residua at
the bound-state poles of the six-point Green’s function.
The Bethe-Salpeter amplitudes, which might be consid-
ered as the covariant analogues of “wave functions” in
the ordinary nonrelativistic approach, obey a homoge-
neous eight-dimensional integral equation in momentum
space – the so-called Bethe-Salpeter equation. In princi-
ple, this is the basic equation for the covariant description
of bound states of three quarks in the framework of QCD,
i.e. solving this equation with the appropriate normaliza-
tion and given single quark propagators and interaction
kernels yields the discrete spectrum of baryons.

However, neither the full quark propagators nor the
interaction vertices are reliably known functions in case
of QCD such that reasonable phenomenological approxi-
mations for these basic ingredients of the Bethe-Salpeter
equation were necessary. In order to remain as close as
possible in contact with the features of the non-relativistic
quark model we adopted the concept of constituent quark
masses using free quark propagators with effective quark
masses and the concept to describe the quark interactions
by instantaneous, unretarded potentials. Although both
replacements are chosen purely phenomenologically they
are justified reasonably well by the apparent success of
nonrelativistic potential models. As in the corresponding
framework for mesons both assumptions then allowed a
reduction of the full (eight-dimensional) Bethe-Salpeter
equation to a reduced six-dimensional equation (Salpeter
equation) in the case of instantaneous three-quark forces.
In this case we obtained an equation for the reduced am-
plitudes (Salpeter amplitudes) with a structure quite sim-
ilar to the ordinary Schrödinger equation and the nor-
malization condition for the Bethe-Salpeter amplitudes
reduced to the ordinary L2 normalization condition induc-
ing a positive-definite scalar product. Complications arose,
when two-particle interactions appeared, since these un-
connected forces within the three-body system prevented
a straightforward reduction as in the case of a pure three-
body interaction alone. However, a reasonable treatment
of these forces within the Salpeter framework is important
since in quark models the three-body confinement forces
are naturally supplemented by two-body residual inter-
actions like the one-gluon-exchange or instanton-induced
forces. We presented a method how in connection with
the genuine instantaneous three-body kernel a reduction
to a Salpeter equation of the same structure can never-
theless be achieved by deriving an effective instantaneous
three-body kernel which parameterizes all effects of the
two-body interactions.

As a crucial property of the instantaneous approxima-
tion we found that it leads to a one-to-one correspondence
with the states of the non-relativistic quark model, a fact
which generally cannot be taken for granted in relativistic

approaches according to the doubling of the spin-degrees
of freedom. In this respect the special projector structure
of the Salpeter equation reduces the number of functions
necessary to describe the bound state and thus circum-
vents a proliferation of the number of states: The Salpeter
amplitudes, which still contain the full Dirac structure
with positive and negative energy components, can be
formed by an isometric embedding map of ordinary non-
relativistic three-quark Pauli wave functions.

We found the appearance of the negative energy com-
ponents to be related to the particle-antiparticle sym-
metry due to the CPT invariance: The spectrum of the
Salpeter equation contains antiparticle solutions corre-
sponding to particles with charge conjugated quantum
numbers. This is a new feature of our Salpeter model for
baryons and quite in contrast to ordinary nonrelativistic
or relativized quark models. Solving the Salpeter equa-
tion for fixed spin J yields at the same time both the
positive- and negative-parity bound-state spectrum and in
particular positive and negative parity states are coupled
in this way and are not independent as in nonrelativistic
approaches.

The fully relativistic kinematics and the formal covari-
ance of our approach overcomes the old difficulties of non-
relativistic approaches which in fact should be completely
inadequate for small constituent quark masses. We ex-
pect the three-quark Salpeter equation to provide a more
reasonable framework for quark models of baryons that
should be superior to other treatments such as the non-
relativistic potential model [39,40] or its simple so-called
“relativized” extension [41]. In particular it offers the pos-
sibility to investigate the effects of the full Dirac structure
of residual forces like the one-gluon-exchange or instanton-
induced interaction and moreover it allows for the first
time a reliable test of possible assumptions concerning the
Dirac structure of three-body confining forces. In two sub-
sequent papers [1,2] we will therefore investigate explicit
quark models based on the purely theoretical results of
this paper and present concrete calculations of the com-
plete non-strange and strange baryon spectrum up to 3
GeV.

We have profited very much from scientific discussions with
V. V. Anisovich, G. E. Brown, E. Klempt, A. V. Sarantsev
and E. V. Shuryak to whom we want to express our gratitude.
We also thank the Deutsche Forschungsgemeinschaft (DFG)
for financial support.

Appendix A. Determination of the effective
kernel Veff

M

In this appendix we derive a prescription to construct the
effective quasi potential V eff

M which has been introduced
in section 4.4. According to eq. (157), V eff

M is defined by

〈GM 〉Λ != Λ〈GM 〉Λ, (A.1)
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where on the left 〈GM 〉Λ is given by eq. (159) which defines
V eff

M , i.e.

〈GM 〉Λ != 〈G0M 〉 − i 〈G0M 〉 V eff
M 〈GM 〉Λ (A.2)

and on the right GM is the solution of the integral equation
(142) with the integral kernel KR

M := V
(3)
R +K

(2)

M , i.e.

GM = G0M − i G0M KR
M GM . (A.3)

Now the goal is to solve eq. (A.1) for V eff
M . For power

counting purposes purpose we multiply the kernel KR
M by

a parameter λ ∈ [0, 1],

KR
M −→ λ KR

M , (A.4)

such that the Neumann series of GM becomes a power
series in λ, and thus

Λ〈GM 〉Λ = 〈G0M 〉

+
∞∑

k=1

λk Λ〈G0M

[
−i KR

M

]
G0M . . .

[
−iKR

M

]
G0M︸ ︷︷ ︸

k times

〉Λ .

(A.5)

The effective kernel V eff
M becomes a function of λ which is

expanded into a Taylor series according to

V eff
M :=

∞∑
k=1

λk V eff
M

(k)
. (A.6)

Inserting this into eq. (A.2) the Neumann series of 〈GM 〉Λ
yields a multiple power series in λ:

〈GM 〉Λ = 〈G0M 〉 − i
∞∑

k=1

λk 〈G0M 〉 V eff
M

(k) 〈G0M 〉

+
∞∑

r=2

∞∑
k1=1

. . .

∞∑
kr=1

λk1+k2+...+kr

×〈G0M 〉
[
−iV eff

M

(k1)
]
〈G0M 〉 . . .

[
−iV eff

M

(kr)
]
〈G0M 〉 .

(A.7)

Collecting all terms of equal power in the third term
(which is of the order λ≥2), the multiple power series can
be transformed into an ordinary series

〈GM 〉Λ = 〈G0M 〉 − i
∞∑

k=1

λk 〈G0M 〉 V eff
M

(k) 〈G0M 〉

+
∞∑

k=2

λk
k∑

r=2

∑
k1, k2, . . . , kr < k

k1 + k2 + . . . + kr = k

〈G0M 〉
[
−i V eff

M

(k1)
]
〈G0M 〉 . . .

[
−i V eff

M

(kr)
]
〈G0M 〉. (A.8)

Finally, we insert the resulting series (A.5) and (A.8) into
eq. (A.1) and we arrive at

∞∑
k=1

λk 〈G0M 〉 V eff
M

(k) 〈G0M 〉 =

i
∞∑

k=1

λk Λ

〈
G0M

[
−i KR

M

]
G0M . . .

[
−i KR

M

]
G0M︸ ︷︷ ︸

k times

〉
Λ

− i
∞∑

k=2

λk
k∑

r=2

∑
k1, k2, . . . , kr < k

k1 + k2 + . . . + kr = k

〈G0M 〉
[
−i V eff

M

(k1)
]
〈G0M 〉 . . .

[
−i V eff

M

(kr)
]
〈G0M 〉, (A.9)

which now enables us to solve for V eff
M (λ) order-by-order

by comparing the expansion coefficients of each power k
of λ. Thus, we find the following reduced terms which are
irreducible with respect to 〈G0M 〉:

– In lowest order, i.e. k = 1, we obtain the Born term
V eff

M

(1):

〈G0M 〉 V eff
M

(1) 〈G0M 〉 = Λ
〈
G0M KR

M G0M

〉
Λ (A.10)

– and in k-th order, k ≥ 2, we get V eff
M

(k), determined
by:

〈G0M 〉 V eff
M

(k) 〈G0M 〉 =

i Λ

〈
G0M

[
−i KR

M

]
G0M . . .

[
−i KR

M

]
G0M︸ ︷︷ ︸

k times

〉
Λ

− i
k∑

r=2

∑
k1, k2, . . . , kr < k

k1 + k2 + . . . + kr = k

〈G0M 〉
[
−i V eff

M

(k1)
]
〈G0M 〉 . . .

[
−iV eff

M

(kr)
]
〈G0M 〉.(A.11)

Finally, we amputate the free Salpeter propagators 〈G0M 〉
using the Hamiltonian h0M with eq. (161) and thus, with
the restriction (163) for V eff

M , we then can solve uniquely
for V eff

M

(k). Consequently, we get the effective kernel V eff
M

as the following infinite sum of irreducible interaction
terms V eff

M

(k):

V eff
M =

∞∑
k=1

V eff
M

(k)
, (A.12)
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where

V eff
M

(1)
= h0M Λ

〈
G0M K

(2)

M G0M

〉
Λ h0M , (A.13)

V eff
M

(k)
= i h0M Λ

×
〈
G0M (−i)

[
V

(3)
R +K

(2)

M

]
G0M . . .(−i)

[
V

(3)
R +K

(2)

M

]
G0M︸ ︷︷ ︸

ktimes

〉

×Λ h0M − i
k∑

r=2

∑
k1, k2, . . . , kr < k

k1 + k2 + . . . + kr = k

[
−i V eff

M

(k1)
]
〈G0M 〉

×
[
−i V eff

M

(k2)
]
〈G0M 〉 . . .

[
−i V eff

M

(kr)
]
. (A.14)

Finally, let us discuss how the instantaneous term V
(3)
R ,

i.e. that part of V (3) that couples to the mixed energy
components, enters in V eff

M

(k). As we mentioned already,
this part of V (3) appears solely in connection with K

(2)
M .

More specifically:

1. In the Born term V eff
M

(1) the isolated contribution of
V

(3)
R vanishes due to its instantaneity and its projector

property ΛV
(3)
R Λ = 0:〈

G0M V
(3)
R G0M

〉
= 〈G0M 〉 V (3)

R 〈G0M 〉 =

〈G0M 〉 ΛV (3)
R Λ 〈G0M 〉 = 0, (A.15)

where we used 〈G0M 〉 = 〈G0M 〉Λ = Λ〈G0M 〉;
2. For the same reason, reduced Feynman diagrams with

more than two direct iterations of V (3)
R disappear:〈

G0M . . . G0MV
(3)
R G0MV

(3)
R G0MV

(3)
R G0M . . . G0M

〉
=

〈G0M . . . G0M 〉V (3)
R 〈G0M 〉V (3)

R 〈G0M 〉︸ ︷︷ ︸
=0

×V (3)
R 〈G0M . . . G0M 〉 = 0. (A.16)

3. Also, the reduced irreducible kernel V eff
M does not con-

tain two direct iterations of V
(3)
R either, since such

terms are reducible with respect to 〈G0M 〉, because
of 〈

G0M . . . G0M V
(3)
R G0M V

(3)
R G0M . . . G0M

〉
=

〈G0M . . . G0M 〉V (3)
R 〈G0M 〉V (3)

R 〈G0M . . . G0M 〉 (A.17)

and thus are built by iterating two reduced Feynman
diagrams of lower order.

Therefore, we conclude that V (3)
R emerges in V eff

M only such
that K(2)

M is always directly attached to V (3)
R from the left-

and/or the right-hand side. This means that in the Green’s
function 〈GM 〉Λ (and even in GM ) at most two direct iter-
ations of V (3)

R can occur. We want to remark here that this

limitation of the number of direct iterations of V (3)
R offers

an alternative counting scheme for the determination of
V eff

M via power series expansion, namely in powers of K
(2)

M

instead of powers of KR
M = V

(3)
R +K

(2)

M .
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